Step |
Hyp |
Ref |
Expression |
1 |
|
fsum2d.1 |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) |
2 |
|
fsum2d.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fsum2d.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
4 |
|
fsum2d.4 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
5 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
6 |
|
sseq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
7 |
|
sumeq1 |
⊢ ( 𝑤 = ∅ → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) |
8 |
|
iuneq1 |
⊢ ( 𝑤 = ∅ → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) ) |
9 |
8
|
sumeq1d |
⊢ ( 𝑤 = ∅ → Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑤 = ∅ → ( Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
11 |
6 10
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( ∅ ⊆ 𝐴 → Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
13 |
|
sseq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
14 |
|
sumeq1 |
⊢ ( 𝑤 = 𝑥 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 ) |
15 |
|
iuneq1 |
⊢ ( 𝑤 = 𝑥 → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ) |
16 |
15
|
sumeq1d |
⊢ ( 𝑤 = 𝑥 → Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑤 = 𝑥 → ( Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
18 |
13 17
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
20 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( 𝑤 ⊆ 𝐴 ↔ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) |
21 |
|
sumeq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) |
22 |
|
iuneq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ) |
23 |
22
|
sumeq1d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |
24 |
21 23
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
25 |
20 24
|
imbi12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
26 |
25
|
imbi2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
27 |
|
sseq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
28 |
|
sumeq1 |
⊢ ( 𝑤 = 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) |
29 |
|
iuneq1 |
⊢ ( 𝑤 = 𝐴 → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
30 |
29
|
sumeq1d |
⊢ ( 𝑤 = 𝐴 → Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
31 |
28 30
|
eqeq12d |
⊢ ( 𝑤 = 𝐴 → ( Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
32 |
27 31
|
imbi12d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( 𝐴 ⊆ 𝐴 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
33 |
32
|
imbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
34 |
|
sum0 |
⊢ Σ 𝑧 ∈ ∅ 𝐷 = 0 |
35 |
|
0iun |
⊢ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) = ∅ |
36 |
35
|
sumeq1i |
⊢ Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ∅ 𝐷 |
37 |
|
sum0 |
⊢ Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = 0 |
38 |
34 36 37
|
3eqtr4ri |
⊢ Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 |
39 |
38
|
2a1i |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
40 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) |
41 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
42 |
40 41
|
mpan |
⊢ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑥 ⊆ 𝐴 ) |
43 |
42
|
imim1i |
⊢ ( ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
44 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝜑 ) |
45 |
44 2
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
46 |
44 3
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
47 |
44 4
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
48 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ¬ 𝑦 ∈ 𝑥 ) |
49 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) |
50 |
|
biid |
⊢ ( Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
51 |
1 45 46 47 48 49 50
|
fsum2dlem |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |
52 |
51
|
exp31 |
⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
53 |
52
|
a2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
54 |
43 53
|
syl5 |
⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
55 |
54
|
expcom |
⊢ ( ¬ 𝑦 ∈ 𝑥 → ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
56 |
55
|
a2d |
⊢ ( ¬ 𝑦 ∈ 𝑥 → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
57 |
56
|
adantl |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
58 |
12 19 26 33 39 57
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
59 |
2 58
|
mpcom |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
60 |
5 59
|
mpi |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |