Metamath Proof Explorer


Theorem fsum2dlem

Description: Lemma for fsum2d - induction step. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsum2d.1 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝐷 = 𝐶 )
fsum2d.2 ( 𝜑𝐴 ∈ Fin )
fsum2d.3 ( ( 𝜑𝑗𝐴 ) → 𝐵 ∈ Fin )
fsum2d.4 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ℂ )
fsum2d.5 ( 𝜑 → ¬ 𝑦𝑥 )
fsum2d.6 ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 )
fsum2d.7 ( 𝜓 ↔ Σ 𝑗𝑥 Σ 𝑘𝐵 𝐶 = Σ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 )
Assertion fsum2dlem ( ( 𝜑𝜓 ) → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘𝐵 𝐶 = Σ 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 )

Proof

Step Hyp Ref Expression
1 fsum2d.1 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝐷 = 𝐶 )
2 fsum2d.2 ( 𝜑𝐴 ∈ Fin )
3 fsum2d.3 ( ( 𝜑𝑗𝐴 ) → 𝐵 ∈ Fin )
4 fsum2d.4 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ℂ )
5 fsum2d.5 ( 𝜑 → ¬ 𝑦𝑥 )
6 fsum2d.6 ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 )
7 fsum2d.7 ( 𝜓 ↔ Σ 𝑗𝑥 Σ 𝑘𝐵 𝐶 = Σ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 )
8 simpr ( ( 𝜑𝜓 ) → 𝜓 )
9 8 7 sylib ( ( 𝜑𝜓 ) → Σ 𝑗𝑥 Σ 𝑘𝐵 𝐶 = Σ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 )
10 nfcv 𝑚 Σ 𝑘𝐵 𝐶
11 nfcsb1v 𝑗 𝑚 / 𝑗 𝐵
12 nfcsb1v 𝑗 𝑚 / 𝑗 𝐶
13 11 12 nfsum 𝑗 Σ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶
14 csbeq1a ( 𝑗 = 𝑚𝐵 = 𝑚 / 𝑗 𝐵 )
15 csbeq1a ( 𝑗 = 𝑚𝐶 = 𝑚 / 𝑗 𝐶 )
16 15 adantr ( ( 𝑗 = 𝑚𝑘𝐵 ) → 𝐶 = 𝑚 / 𝑗 𝐶 )
17 14 16 sumeq12dv ( 𝑗 = 𝑚 → Σ 𝑘𝐵 𝐶 = Σ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶 )
18 10 13 17 cbvsumi Σ 𝑗 ∈ { 𝑦 } Σ 𝑘𝐵 𝐶 = Σ 𝑚 ∈ { 𝑦 } Σ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶
19 6 unssbd ( 𝜑 → { 𝑦 } ⊆ 𝐴 )
20 vex 𝑦 ∈ V
21 20 snss ( 𝑦𝐴 ↔ { 𝑦 } ⊆ 𝐴 )
22 19 21 sylibr ( 𝜑𝑦𝐴 )
23 3 ralrimiva ( 𝜑 → ∀ 𝑗𝐴 𝐵 ∈ Fin )
24 nfcsb1v 𝑗 𝑦 / 𝑗 𝐵
25 24 nfel1 𝑗 𝑦 / 𝑗 𝐵 ∈ Fin
26 csbeq1a ( 𝑗 = 𝑦𝐵 = 𝑦 / 𝑗 𝐵 )
27 26 eleq1d ( 𝑗 = 𝑦 → ( 𝐵 ∈ Fin ↔ 𝑦 / 𝑗 𝐵 ∈ Fin ) )
28 25 27 rspc ( 𝑦𝐴 → ( ∀ 𝑗𝐴 𝐵 ∈ Fin → 𝑦 / 𝑗 𝐵 ∈ Fin ) )
29 22 23 28 sylc ( 𝜑 𝑦 / 𝑗 𝐵 ∈ Fin )
30 4 ralrimivva ( 𝜑 → ∀ 𝑗𝐴𝑘𝐵 𝐶 ∈ ℂ )
31 nfcsb1v 𝑗 𝑦 / 𝑗 𝐶
32 31 nfel1 𝑗 𝑦 / 𝑗 𝐶 ∈ ℂ
33 24 32 nfralw 𝑗𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ
34 csbeq1a ( 𝑗 = 𝑦𝐶 = 𝑦 / 𝑗 𝐶 )
35 34 eleq1d ( 𝑗 = 𝑦 → ( 𝐶 ∈ ℂ ↔ 𝑦 / 𝑗 𝐶 ∈ ℂ ) )
36 26 35 raleqbidv ( 𝑗 = 𝑦 → ( ∀ 𝑘𝐵 𝐶 ∈ ℂ ↔ ∀ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ ) )
37 33 36 rspc ( 𝑦𝐴 → ( ∀ 𝑗𝐴𝑘𝐵 𝐶 ∈ ℂ → ∀ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ ) )
38 22 30 37 sylc ( 𝜑 → ∀ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ )
39 38 r19.21bi ( ( 𝜑𝑘 𝑦 / 𝑗 𝐵 ) → 𝑦 / 𝑗 𝐶 ∈ ℂ )
40 29 39 fsumcl ( 𝜑 → Σ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ )
41 csbeq1 ( 𝑚 = 𝑦 𝑚 / 𝑗 𝐵 = 𝑦 / 𝑗 𝐵 )
42 csbeq1 ( 𝑚 = 𝑦 𝑚 / 𝑗 𝐶 = 𝑦 / 𝑗 𝐶 )
43 42 adantr ( ( 𝑚 = 𝑦𝑘 𝑚 / 𝑗 𝐵 ) → 𝑚 / 𝑗 𝐶 = 𝑦 / 𝑗 𝐶 )
44 41 43 sumeq12dv ( 𝑚 = 𝑦 → Σ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶 = Σ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 )
45 44 sumsn ( ( 𝑦𝐴 ∧ Σ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ ) → Σ 𝑚 ∈ { 𝑦 } Σ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶 = Σ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 )
46 22 40 45 syl2anc ( 𝜑 → Σ 𝑚 ∈ { 𝑦 } Σ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶 = Σ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 )
47 nfcv 𝑚 𝑦 / 𝑗 𝐶
48 nfcsb1v 𝑘 𝑚 / 𝑘 𝑦 / 𝑗 𝐶
49 csbeq1a ( 𝑘 = 𝑚 𝑦 / 𝑗 𝐶 = 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 )
50 47 48 49 cbvsumi Σ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 = Σ 𝑚 𝑦 / 𝑗 𝐵 𝑚 / 𝑘 𝑦 / 𝑗 𝐶
51 csbeq1 ( 𝑚 = ( 2nd𝑧 ) → 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
52 snfi { 𝑦 } ∈ Fin
53 xpfi ( ( { 𝑦 } ∈ Fin ∧ 𝑦 / 𝑗 𝐵 ∈ Fin ) → ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ∈ Fin )
54 52 29 53 sylancr ( 𝜑 → ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ∈ Fin )
55 2ndconst ( 𝑦𝐴 → ( 2nd ↾ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) : ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) –1-1-onto 𝑦 / 𝑗 𝐵 )
56 22 55 syl ( 𝜑 → ( 2nd ↾ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) : ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) –1-1-onto 𝑦 / 𝑗 𝐵 )
57 fvres ( 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) → ( ( 2nd ↾ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) ‘ 𝑧 ) = ( 2nd𝑧 ) )
58 57 adantl ( ( 𝜑𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) → ( ( 2nd ↾ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) ‘ 𝑧 ) = ( 2nd𝑧 ) )
59 48 nfel1 𝑘 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 ∈ ℂ
60 49 eleq1d ( 𝑘 = 𝑚 → ( 𝑦 / 𝑗 𝐶 ∈ ℂ ↔ 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 ∈ ℂ ) )
61 59 60 rspc ( 𝑚 𝑦 / 𝑗 𝐵 → ( ∀ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ → 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 ∈ ℂ ) )
62 38 61 mpan9 ( ( 𝜑𝑚 𝑦 / 𝑗 𝐵 ) → 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 ∈ ℂ )
63 51 54 56 58 62 fsumf1o ( 𝜑 → Σ 𝑚 𝑦 / 𝑗 𝐵 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 = Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
64 elxp ( 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ↔ ∃ 𝑚𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ) )
65 nfv 𝑗 𝑧 = ⟨ 𝑚 , 𝑘
66 nfv 𝑗 𝑚 ∈ { 𝑦 }
67 24 nfcri 𝑗 𝑘 𝑦 / 𝑗 𝐵
68 66 67 nfan 𝑗 ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 )
69 65 68 nfan 𝑗 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) )
70 69 nfex 𝑗𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) )
71 nfv 𝑚𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) )
72 opeq1 ( 𝑚 = 𝑗 → ⟨ 𝑚 , 𝑘 ⟩ = ⟨ 𝑗 , 𝑘 ⟩ )
73 72 eqeq2d ( 𝑚 = 𝑗 → ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ↔ 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) )
74 velsn ( 𝑚 ∈ { 𝑦 } ↔ 𝑚 = 𝑦 )
75 74 anbi1i ( ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ↔ ( 𝑚 = 𝑦𝑘 𝑦 / 𝑗 𝐵 ) )
76 eqtr2 ( ( 𝑚 = 𝑗𝑚 = 𝑦 ) → 𝑗 = 𝑦 )
77 76 26 syl ( ( 𝑚 = 𝑗𝑚 = 𝑦 ) → 𝐵 = 𝑦 / 𝑗 𝐵 )
78 77 eleq2d ( ( 𝑚 = 𝑗𝑚 = 𝑦 ) → ( 𝑘𝐵𝑘 𝑦 / 𝑗 𝐵 ) )
79 78 pm5.32da ( 𝑚 = 𝑗 → ( ( 𝑚 = 𝑦𝑘𝐵 ) ↔ ( 𝑚 = 𝑦𝑘 𝑦 / 𝑗 𝐵 ) ) )
80 75 79 bitr4id ( 𝑚 = 𝑗 → ( ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ↔ ( 𝑚 = 𝑦𝑘𝐵 ) ) )
81 equequ1 ( 𝑚 = 𝑗 → ( 𝑚 = 𝑦𝑗 = 𝑦 ) )
82 81 anbi1d ( 𝑚 = 𝑗 → ( ( 𝑚 = 𝑦𝑘𝐵 ) ↔ ( 𝑗 = 𝑦𝑘𝐵 ) ) )
83 80 82 bitrd ( 𝑚 = 𝑗 → ( ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ↔ ( 𝑗 = 𝑦𝑘𝐵 ) ) )
84 73 83 anbi12d ( 𝑚 = 𝑗 → ( ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ) ↔ ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) ) )
85 84 exbidv ( 𝑚 = 𝑗 → ( ∃ 𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ) ↔ ∃ 𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) ) )
86 70 71 85 cbvexv1 ( ∃ 𝑚𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ) ↔ ∃ 𝑗𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) )
87 64 86 bitri ( 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ↔ ∃ 𝑗𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) )
88 nfv 𝑗 𝜑
89 nfcv 𝑗 ( 2nd𝑧 )
90 89 31 nfcsbw 𝑗 ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶
91 90 nfeq2 𝑗 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶
92 nfv 𝑘 𝜑
93 nfcsb1v 𝑘 ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶
94 93 nfeq2 𝑘 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶
95 1 ad2antlr ( ( ( 𝜑𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐷 = 𝐶 )
96 34 ad2antrl ( ( ( 𝜑𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐶 = 𝑦 / 𝑗 𝐶 )
97 fveq2 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → ( 2nd𝑧 ) = ( 2nd ‘ ⟨ 𝑗 , 𝑘 ⟩ ) )
98 vex 𝑗 ∈ V
99 vex 𝑘 ∈ V
100 98 99 op2nd ( 2nd ‘ ⟨ 𝑗 , 𝑘 ⟩ ) = 𝑘
101 97 100 eqtr2di ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝑘 = ( 2nd𝑧 ) )
102 101 ad2antlr ( ( ( 𝜑𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝑘 = ( 2nd𝑧 ) )
103 csbeq1a ( 𝑘 = ( 2nd𝑧 ) → 𝑦 / 𝑗 𝐶 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
104 102 103 syl ( ( ( 𝜑𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝑦 / 𝑗 𝐶 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
105 95 96 104 3eqtrd ( ( ( 𝜑𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
106 105 expl ( 𝜑 → ( ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 ) )
107 92 94 106 exlimd ( 𝜑 → ( ∃ 𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 ) )
108 88 91 107 exlimd ( 𝜑 → ( ∃ 𝑗𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 ) )
109 87 108 syl5bi ( 𝜑 → ( 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 ) )
110 109 imp ( ( 𝜑𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
111 110 sumeq2dv ( 𝜑 → Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 = Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
112 63 111 eqtr4d ( 𝜑 → Σ 𝑚 𝑦 / 𝑗 𝐵 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 = Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 )
113 50 112 eqtrid ( 𝜑 → Σ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 = Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 )
114 46 113 eqtrd ( 𝜑 → Σ 𝑚 ∈ { 𝑦 } Σ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶 = Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 )
115 18 114 eqtrid ( 𝜑 → Σ 𝑗 ∈ { 𝑦 } Σ 𝑘𝐵 𝐶 = Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 )
116 115 adantr ( ( 𝜑𝜓 ) → Σ 𝑗 ∈ { 𝑦 } Σ 𝑘𝐵 𝐶 = Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 )
117 9 116 oveq12d ( ( 𝜑𝜓 ) → ( Σ 𝑗𝑥 Σ 𝑘𝐵 𝐶 + Σ 𝑗 ∈ { 𝑦 } Σ 𝑘𝐵 𝐶 ) = ( Σ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 + Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 ) )
118 disjsn ( ( 𝑥 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦𝑥 )
119 5 118 sylibr ( 𝜑 → ( 𝑥 ∩ { 𝑦 } ) = ∅ )
120 eqidd ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) = ( 𝑥 ∪ { 𝑦 } ) )
121 2 6 ssfid ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ∈ Fin )
122 6 sselda ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝑗𝐴 )
123 4 anassrs ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℂ )
124 3 123 fsumcl ( ( 𝜑𝑗𝐴 ) → Σ 𝑘𝐵 𝐶 ∈ ℂ )
125 122 124 syldan ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → Σ 𝑘𝐵 𝐶 ∈ ℂ )
126 119 120 121 125 fsumsplit ( 𝜑 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘𝐵 𝐶 = ( Σ 𝑗𝑥 Σ 𝑘𝐵 𝐶 + Σ 𝑗 ∈ { 𝑦 } Σ 𝑘𝐵 𝐶 ) )
127 126 adantr ( ( 𝜑𝜓 ) → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘𝐵 𝐶 = ( Σ 𝑗𝑥 Σ 𝑘𝐵 𝐶 + Σ 𝑗 ∈ { 𝑦 } Σ 𝑘𝐵 𝐶 ) )
128 eliun ( 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗𝑥 𝑧 ∈ ( { 𝑗 } × 𝐵 ) )
129 xp1st ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) ∈ { 𝑗 } )
130 elsni ( ( 1st𝑧 ) ∈ { 𝑗 } → ( 1st𝑧 ) = 𝑗 )
131 129 130 syl ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) = 𝑗 )
132 131 adantl ( ( 𝑗𝑥𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ( 1st𝑧 ) = 𝑗 )
133 simpl ( ( 𝑗𝑥𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑗𝑥 )
134 132 133 eqeltrd ( ( 𝑗𝑥𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ( 1st𝑧 ) ∈ 𝑥 )
135 134 rexlimiva ( ∃ 𝑗𝑥 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) ∈ 𝑥 )
136 128 135 sylbi ( 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) ∈ 𝑥 )
137 xp1st ( 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) → ( 1st𝑧 ) ∈ { 𝑦 } )
138 136 137 anim12i ( ( 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∧ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) → ( ( 1st𝑧 ) ∈ 𝑥 ∧ ( 1st𝑧 ) ∈ { 𝑦 } ) )
139 elin ( 𝑧 ∈ ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) ↔ ( 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∧ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) )
140 elin ( ( 1st𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) ↔ ( ( 1st𝑧 ) ∈ 𝑥 ∧ ( 1st𝑧 ) ∈ { 𝑦 } ) )
141 138 139 140 3imtr4i ( 𝑧 ∈ ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) → ( 1st𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) )
142 119 eleq2d ( 𝜑 → ( ( 1st𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) ↔ ( 1st𝑧 ) ∈ ∅ ) )
143 noel ¬ ( 1st𝑧 ) ∈ ∅
144 143 pm2.21i ( ( 1st𝑧 ) ∈ ∅ → 𝑧 ∈ ∅ )
145 142 144 syl6bi ( 𝜑 → ( ( 1st𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) → 𝑧 ∈ ∅ ) )
146 141 145 syl5 ( 𝜑 → ( 𝑧 ∈ ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) → 𝑧 ∈ ∅ ) )
147 146 ssrdv ( 𝜑 → ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) ⊆ ∅ )
148 ss0 ( ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) ⊆ ∅ → ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) = ∅ )
149 147 148 syl ( 𝜑 → ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) = ∅ )
150 iunxun 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) )
151 nfcv 𝑚 ( { 𝑗 } × 𝐵 )
152 nfcv 𝑗 { 𝑚 }
153 152 11 nfxp 𝑗 ( { 𝑚 } × 𝑚 / 𝑗 𝐵 )
154 sneq ( 𝑗 = 𝑚 → { 𝑗 } = { 𝑚 } )
155 154 14 xpeq12d ( 𝑗 = 𝑚 → ( { 𝑗 } × 𝐵 ) = ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) )
156 151 153 155 cbviun 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) = 𝑚 ∈ { 𝑦 } ( { 𝑚 } × 𝑚 / 𝑗 𝐵 )
157 sneq ( 𝑚 = 𝑦 → { 𝑚 } = { 𝑦 } )
158 157 41 xpeq12d ( 𝑚 = 𝑦 → ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) = ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) )
159 20 158 iunxsn 𝑚 ∈ { 𝑦 } ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) = ( { 𝑦 } × 𝑦 / 𝑗 𝐵 )
160 156 159 eqtri 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) = ( { 𝑦 } × 𝑦 / 𝑗 𝐵 )
161 160 uneq2i ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) ) = ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) )
162 150 161 eqtri 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) )
163 162 a1i ( 𝜑 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) )
164 snfi { 𝑗 } ∈ Fin
165 122 3 syldan ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝐵 ∈ Fin )
166 xpfi ( ( { 𝑗 } ∈ Fin ∧ 𝐵 ∈ Fin ) → ( { 𝑗 } × 𝐵 ) ∈ Fin )
167 164 165 166 sylancr ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( { 𝑗 } × 𝐵 ) ∈ Fin )
168 167 ralrimiva ( 𝜑 → ∀ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin )
169 iunfi ( ( ( 𝑥 ∪ { 𝑦 } ) ∈ Fin ∧ ∀ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin ) → 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin )
170 121 168 169 syl2anc ( 𝜑 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin )
171 eliun ( 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝑧 ∈ ( { 𝑗 } × 𝐵 ) )
172 elxp ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑚𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) )
173 simprl ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ )
174 simprrl ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑚 ∈ { 𝑗 } )
175 elsni ( 𝑚 ∈ { 𝑗 } → 𝑚 = 𝑗 )
176 174 175 syl ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑚 = 𝑗 )
177 176 opeq1d ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → ⟨ 𝑚 , 𝑘 ⟩ = ⟨ 𝑗 , 𝑘 ⟩ )
178 173 177 eqtrd ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ )
179 178 1 syl ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝐷 = 𝐶 )
180 simpll ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝜑 )
181 122 adantr ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑗𝐴 )
182 simprrr ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑘𝐵 )
183 180 181 182 4 syl12anc ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝐶 ∈ ℂ )
184 179 183 eqeltrd ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝐷 ∈ ℂ )
185 184 ex ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) → 𝐷 ∈ ℂ ) )
186 185 exlimdvv ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( ∃ 𝑚𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) → 𝐷 ∈ ℂ ) )
187 172 186 syl5bi ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) )
188 187 rexlimdva ( 𝜑 → ( ∃ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) )
189 171 188 syl5bi ( 𝜑 → ( 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) )
190 189 imp ( ( 𝜑𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ) → 𝐷 ∈ ℂ )
191 149 163 170 190 fsumsplit ( 𝜑 → Σ 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 = ( Σ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 + Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 ) )
192 191 adantr ( ( 𝜑𝜓 ) → Σ 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 = ( Σ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 + Σ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 ) )
193 117 127 192 3eqtr4d ( ( 𝜑𝜓 ) → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘𝐵 𝐶 = Σ 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 )