Step |
Hyp |
Ref |
Expression |
1 |
|
fsumabs.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumabs.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
4 |
|
sseq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
5 |
|
sumeq1 |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
6 |
5
|
fveq2d |
⊢ ( 𝑤 = ∅ → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ) |
7 |
|
sumeq1 |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) = Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) |
8 |
6 7
|
breq12d |
⊢ ( 𝑤 = ∅ → ( ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ↔ ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) ) |
9 |
4 8
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ↔ ( ∅ ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) ) ) ) |
11 |
|
sseq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
12 |
|
sumeq1 |
⊢ ( 𝑤 = 𝑥 → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
13 |
12
|
fveq2d |
⊢ ( 𝑤 = 𝑥 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ) |
14 |
|
sumeq1 |
⊢ ( 𝑤 = 𝑥 → Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) = Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) |
15 |
13 14
|
breq12d |
⊢ ( 𝑤 = 𝑥 → ( ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ↔ ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) |
16 |
11 15
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ↔ ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) ) ) |
18 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( 𝑤 ⊆ 𝐴 ↔ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) |
19 |
|
sumeq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) |
20 |
19
|
fveq2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ) |
21 |
|
sumeq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) = Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) |
22 |
20 21
|
breq12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ↔ ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
23 |
18 22
|
imbi12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ↔ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) ) |
25 |
|
sseq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
26 |
|
sumeq1 |
⊢ ( 𝑤 = 𝐴 → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ 𝐴 𝐵 ) |
27 |
26
|
fveq2d |
⊢ ( 𝑤 = 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
28 |
|
sumeq1 |
⊢ ( 𝑤 = 𝐴 → Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) |
29 |
27 28
|
breq12d |
⊢ ( 𝑤 = 𝐴 → ( ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ↔ ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) |
30 |
25 29
|
imbi12d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ↔ ( 𝐴 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) ) |
31 |
30
|
imbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) ) ) |
32 |
|
0le0 |
⊢ 0 ≤ 0 |
33 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
34 |
33
|
fveq2i |
⊢ ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) = ( abs ‘ 0 ) |
35 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
36 |
34 35
|
eqtri |
⊢ ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) = 0 |
37 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) = 0 |
38 |
32 36 37
|
3brtr4i |
⊢ ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) |
39 |
38
|
2a1i |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) ) |
40 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) |
41 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
42 |
40 41
|
mpan |
⊢ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑥 ⊆ 𝐴 ) |
43 |
42
|
imim1i |
⊢ ( ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) |
44 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝜑 ) |
45 |
44 1
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
46 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) |
47 |
46
|
unssad |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
48 |
45 47
|
ssfid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑥 ∈ Fin ) |
49 |
47
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐴 ) |
50 |
44 49 2
|
syl2an2r |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑥 ) → 𝐵 ∈ ℂ ) |
51 |
48 50
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ 𝑥 𝐵 ∈ ℂ ) |
52 |
51
|
abscld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ∈ ℝ ) |
53 |
50
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑥 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
54 |
48 53
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ∈ ℝ ) |
55 |
46
|
unssbd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → { 𝑦 } ⊆ 𝐴 ) |
56 |
|
vex |
⊢ 𝑦 ∈ V |
57 |
56
|
snss |
⊢ ( 𝑦 ∈ 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) |
58 |
55 57
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
59 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
60 |
44 59
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
61 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐵 |
62 |
61
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ∈ ℂ |
63 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) |
64 |
63
|
eleq1d |
⊢ ( 𝑘 = 𝑦 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
65 |
62 64
|
rspc |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
66 |
58 60 65
|
sylc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
67 |
66
|
abscld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
68 |
52 54 67
|
leadd1d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) ) |
69 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ¬ 𝑦 ∈ 𝑥 ) |
70 |
|
disjsn |
⊢ ( ( 𝑥 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦 ∈ 𝑥 ) |
71 |
69 70
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∩ { 𝑦 } ) = ∅ ) |
72 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑦 } ) = ( 𝑥 ∪ { 𝑦 } ) ) |
73 |
45 46
|
ssfid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑦 } ) ∈ Fin ) |
74 |
46
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝑘 ∈ 𝐴 ) |
75 |
44 74 2
|
syl2an2r |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝐵 ∈ ℂ ) |
76 |
75
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
77 |
76
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
78 |
71 72 73 77
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) = ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + Σ 𝑘 ∈ { 𝑦 } ( abs ‘ 𝐵 ) ) ) |
79 |
|
csbfv2g |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) |
80 |
79
|
elv |
⊢ ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) |
81 |
67
|
recnd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ∈ ℂ ) |
82 |
80 81
|
eqeltrid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) ∈ ℂ ) |
83 |
|
sumsns |
⊢ ( ( 𝑦 ∈ V ∧ ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) ∈ ℂ ) → Σ 𝑘 ∈ { 𝑦 } ( abs ‘ 𝐵 ) = ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) ) |
84 |
56 82 83
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ { 𝑦 } ( abs ‘ 𝐵 ) = ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) ) |
85 |
84 80
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ { 𝑦 } ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) |
86 |
85
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + Σ 𝑘 ∈ { 𝑦 } ( abs ‘ 𝐵 ) ) = ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) |
87 |
78 86
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) = ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) |
88 |
87
|
breq2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) ) |
89 |
68 88
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
90 |
71 72 73 75
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑥 𝐵 + Σ 𝑘 ∈ { 𝑦 } 𝐵 ) ) |
91 |
|
sumsns |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑦 } 𝐵 = ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) |
92 |
58 66 91
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ { 𝑦 } 𝐵 = ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) |
93 |
92
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( Σ 𝑘 ∈ 𝑥 𝐵 + Σ 𝑘 ∈ { 𝑦 } 𝐵 ) = ( Σ 𝑘 ∈ 𝑥 𝐵 + ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) |
94 |
90 93
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑥 𝐵 + ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) |
95 |
94
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) = ( abs ‘ ( Σ 𝑘 ∈ 𝑥 𝐵 + ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) |
96 |
51 66
|
abstrid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ ( Σ 𝑘 ∈ 𝑥 𝐵 + ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) |
97 |
95 96
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) |
98 |
73 75
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ∈ ℂ ) |
99 |
98
|
abscld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ∈ ℝ ) |
100 |
52 67
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ∈ ℝ ) |
101 |
73 76
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ∈ ℝ ) |
102 |
|
letr |
⊢ ( ( ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ∈ ℝ ∧ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ∈ ℝ ∧ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ∈ ℝ ) → ( ( ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ∧ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
103 |
99 100 101 102
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ∧ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
104 |
97 103
|
mpand |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
105 |
89 104
|
sylbid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
106 |
105
|
ex |
⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) |
107 |
106
|
a2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) |
108 |
43 107
|
syl5 |
⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) |
109 |
108
|
expcom |
⊢ ( ¬ 𝑦 ∈ 𝑥 → ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) ) |
110 |
109
|
a2d |
⊢ ( ¬ 𝑦 ∈ 𝑥 → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) ) |
111 |
110
|
adantl |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) ) |
112 |
10 17 24 31 39 111
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) ) |
113 |
1 112
|
mpcom |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) |
114 |
3 113
|
mpi |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) |