Metamath Proof Explorer
Description: The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)
|
|
Ref |
Expression |
|
Hypotheses |
fsumre.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
fsumre.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
|
Assertion |
fsumcj |
⊢ ( 𝜑 → ( ∗ ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( ∗ ‘ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fsumre.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumre.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
4 |
|
cjadd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) |
5 |
1 2 3 4
|
fsumrelem |
⊢ ( 𝜑 → ( ∗ ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( ∗ ‘ 𝐵 ) ) |