Metamath Proof Explorer


Theorem fsumcl

Description: Closure of a finite sum of complex numbers A ( k ) . (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 22-Apr-2014)

Ref Expression
Hypotheses fsumcl.1 ( 𝜑𝐴 ∈ Fin )
fsumcl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsumcl ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 fsumcl.1 ( 𝜑𝐴 ∈ Fin )
2 fsumcl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
3 ssidd ( 𝜑 → ℂ ⊆ ℂ )
4 addcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
5 4 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
6 0cnd ( 𝜑 → 0 ∈ ℂ )
7 3 5 1 2 6 fsumcllem ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℂ )