Metamath Proof Explorer
Description: Closure of a finite sum of complex numbers A ( k ) . (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 22-Apr-2014)
|
|
Ref |
Expression |
|
Hypotheses |
fsumcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
fsumcl.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
|
Assertion |
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumcl.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
4 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
6 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
7 |
3 5 1 2 6
|
fsumcllem |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |