Metamath Proof Explorer


Theorem fsumclf

Description: Closure of a finite sum of complex numbers A ( k ) . A version of fsumcl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumclf.ph 𝑘 𝜑
fsumclf.a ( 𝜑𝐴 ∈ Fin )
fsumclf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsumclf ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 fsumclf.ph 𝑘 𝜑
2 fsumclf.a ( 𝜑𝐴 ∈ Fin )
3 fsumclf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
4 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
5 nfcv 𝑗 𝐵
6 nfcsb1v 𝑘 𝑗 / 𝑘 𝐵
7 4 5 6 cbvsum Σ 𝑘𝐴 𝐵 = Σ 𝑗𝐴 𝑗 / 𝑘 𝐵
8 7 a1i ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 )
9 nfv 𝑘 𝑗𝐴
10 1 9 nfan 𝑘 ( 𝜑𝑗𝐴 )
11 6 nfel1 𝑘 𝑗 / 𝑘 𝐵 ∈ ℂ
12 10 11 nfim 𝑘 ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ )
13 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝐴𝑗𝐴 ) )
14 13 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑗𝐴 ) ) )
15 4 eleq1d ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ 𝑗 / 𝑘 𝐵 ∈ ℂ ) )
16 14 15 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ ) ) )
17 12 16 3 chvarfv ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ )
18 2 17 fsumcl ( 𝜑 → Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 ∈ ℂ )
19 8 18 eqeltrd ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℂ )