Metamath Proof Explorer


Theorem fsumclf

Description: Closure of a finite sum of complex numbers A ( k ) . A version of fsumcl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumclf.ph 𝑘 𝜑
fsumclf.a ( 𝜑𝐴 ∈ Fin )
fsumclf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsumclf ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 fsumclf.ph 𝑘 𝜑
2 fsumclf.a ( 𝜑𝐴 ∈ Fin )
3 fsumclf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
4 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
5 nfcv 𝑗 𝐴
6 nfcv 𝑘 𝐴
7 nfcv 𝑗 𝐵
8 nfcsb1v 𝑘 𝑗 / 𝑘 𝐵
9 4 5 6 7 8 cbvsum Σ 𝑘𝐴 𝐵 = Σ 𝑗𝐴 𝑗 / 𝑘 𝐵
10 9 a1i ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 )
11 nfv 𝑘 𝑗𝐴
12 1 11 nfan 𝑘 ( 𝜑𝑗𝐴 )
13 8 nfel1 𝑘 𝑗 / 𝑘 𝐵 ∈ ℂ
14 12 13 nfim 𝑘 ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ )
15 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝐴𝑗𝐴 ) )
16 15 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑗𝐴 ) ) )
17 4 eleq1d ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ 𝑗 / 𝑘 𝐵 ∈ ℂ ) )
18 16 17 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ ) ) )
19 14 18 3 chvarfv ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ )
20 2 19 fsumcl ( 𝜑 → Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 ∈ ℂ )
21 10 20 eqeltrd ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℂ )