| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumcllem.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 2 |
|
fsumcllem.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 3 |
|
fsumcllem.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
|
fsumcllem.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
| 5 |
|
fsumcllem.5 |
⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
| 7 |
6
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
| 8 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
| 9 |
7 8
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 0 ∈ 𝑆 ) |
| 11 |
9 10
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| 12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝑆 ⊆ ℂ ) |
| 13 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) |
| 15 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 17 |
12 13 14 15 16
|
fsumcl2lem |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| 18 |
11 17
|
pm2.61dane |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |