| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumcn.3 |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 2 |
|
fsumcn.4 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 3 |
|
fsumcn.5 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
|
fsumcn.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 5 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 6 |
|
sseq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
| 7 |
|
sumeq1 |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
| 8 |
7
|
mpteq2dv |
⊢ ( 𝑤 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ) |
| 9 |
8
|
eleq1d |
⊢ ( 𝑤 = ∅ → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 10 |
6 9
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( ∅ ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 12 |
|
sseq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
| 13 |
|
sumeq1 |
⊢ ( 𝑤 = 𝑦 → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ 𝑦 𝐵 ) |
| 14 |
13
|
mpteq2dv |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 16 |
12 15
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 18 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐴 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) |
| 19 |
|
sumeq1 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
| 20 |
19
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
| 21 |
20
|
eleq1d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 22 |
18 21
|
imbi12d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 24 |
|
sseq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
| 25 |
|
sumeq1 |
⊢ ( 𝑤 = 𝐴 → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 26 |
25
|
mpteq2dv |
⊢ ( 𝑤 = 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 28 |
24 27
|
imbi12d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( 𝐴 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 30 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
| 31 |
30
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
| 32 |
1
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 34 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 35 |
2 33 34
|
cnmptc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 0 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 36 |
31 35
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 37 |
36
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 38 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
| 39 |
|
sstr |
⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
| 40 |
38 39
|
mpan |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → 𝑦 ⊆ 𝐴 ) |
| 41 |
40
|
imim1i |
⊢ ( ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 42 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 43 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) |
| 44 |
42 43
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 45 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
| 46 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 ∈ Fin ) |
| 47 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 48 |
46 47
|
ssfid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 49 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝜑 ) |
| 50 |
47
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐴 ) |
| 51 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑥 ∈ 𝑋 ) |
| 52 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 53 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 54 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
| 55 |
52 53 4 54
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
| 56 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) |
| 57 |
56
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
| 58 |
55 57
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ) |
| 59 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ → ( 𝑥 ∈ 𝑋 → 𝐵 ∈ ℂ ) ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 → 𝐵 ∈ ℂ ) ) |
| 61 |
60
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 62 |
49 50 51 61
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐵 ∈ ℂ ) |
| 63 |
44 45 48 62
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + Σ 𝑘 ∈ { 𝑧 } 𝐵 ) ) |
| 64 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 65 |
64
|
unssbd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → { 𝑧 } ⊆ 𝐴 ) |
| 66 |
|
vex |
⊢ 𝑧 ∈ V |
| 67 |
66
|
snss |
⊢ ( 𝑧 ∈ 𝐴 ↔ { 𝑧 } ⊆ 𝐴 ) |
| 68 |
65 67
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 69 |
68
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑧 ∈ 𝐴 ) |
| 70 |
60
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐴 → 𝐵 ∈ ℂ ) ) |
| 71 |
70
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 72 |
71
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 73 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 74 |
73
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 75 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 76 |
75
|
eleq1d |
⊢ ( 𝑘 = 𝑧 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 77 |
74 76
|
rspc |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 78 |
69 72 77
|
sylc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 79 |
|
sumsns |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑧 } 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 80 |
69 78 79
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → Σ 𝑘 ∈ { 𝑧 } 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 81 |
80
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ( Σ 𝑘 ∈ 𝑦 𝐵 + Σ 𝑘 ∈ { 𝑧 } 𝐵 ) = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 82 |
63 81
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 83 |
82
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 84 |
83
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 85 |
84
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 86 |
|
nfcv |
⊢ Ⅎ 𝑤 ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 87 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 88 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
| 89 |
87 88
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
| 90 |
|
nfcv |
⊢ Ⅎ 𝑥 + |
| 91 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 92 |
91 88
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
| 93 |
89 90 92
|
nfov |
⊢ Ⅎ 𝑥 ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 94 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 95 |
94
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑤 → Σ 𝑘 ∈ 𝑦 𝐵 = Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 96 |
94
|
csbeq2dv |
⊢ ( 𝑥 = 𝑤 → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 97 |
95 96
|
oveq12d |
⊢ ( 𝑥 = 𝑤 → ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) = ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) |
| 98 |
86 93 97
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) |
| 99 |
85 98
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( 𝑤 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) ) |
| 100 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 101 |
|
nfcv |
⊢ Ⅎ 𝑤 Σ 𝑘 ∈ 𝑦 𝐵 |
| 102 |
101 89 95
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑤 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 103 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 104 |
102 103
|
eqeltrrid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑤 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 105 |
|
nfcv |
⊢ Ⅎ 𝑤 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 106 |
105 92 96
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) = ( 𝑤 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 107 |
68
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → 𝑧 ∈ 𝐴 ) |
| 108 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 109 |
108
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 110 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
| 111 |
110 73
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 112 |
111
|
nfel1 |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) |
| 113 |
75
|
mpteq2dv |
⊢ ( 𝑘 = 𝑧 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 114 |
113
|
eleq1d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 115 |
112 114
|
rspc |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 116 |
107 109 115
|
sylc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 117 |
106 116
|
eqeltrrid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑤 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 118 |
1
|
addcn |
⊢ + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 119 |
118
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 120 |
100 104 117 119
|
cnmpt12f |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑤 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 121 |
99 120
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 122 |
121
|
exp32 |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 123 |
122
|
a2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 124 |
41 123
|
syl5 |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 125 |
124
|
expcom |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝜑 → ( ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 126 |
125
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝜑 → ( ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 127 |
126
|
a2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 128 |
11 17 23 29 37 127
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 129 |
3 128
|
mpcom |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 130 |
5 129
|
mpi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |