Metamath Proof Explorer


Theorem fsumcncf

Description: The finite sum of continuous complex function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fsumcncf.x ( 𝜑𝑋 ⊆ ℂ )
fsumcncf.a ( 𝜑𝐴 ∈ Fin )
fsumcncf.cncf ( ( 𝜑𝑘𝐴 ) → ( 𝑥𝑋𝐵 ) ∈ ( 𝑋cn→ ℂ ) )
Assertion fsumcncf ( 𝜑 → ( 𝑥𝑋 ↦ Σ 𝑘𝐴 𝐵 ) ∈ ( 𝑋cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 fsumcncf.x ( 𝜑𝑋 ⊆ ℂ )
2 fsumcncf.a ( 𝜑𝐴 ∈ Fin )
3 fsumcncf.cncf ( ( 𝜑𝑘𝐴 ) → ( 𝑥𝑋𝐵 ) ∈ ( 𝑋cn→ ℂ ) )
4 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
5 4 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
6 5 a1i ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) )
7 resttopon ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑋 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) )
8 6 1 7 syl2anc ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) )
9 ssidd ( 𝜑 → ℂ ⊆ ℂ )
10 eqid ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 )
11 4 cnfldtop ( TopOpen ‘ ℂfld ) ∈ Top
12 unicntop ℂ = ( TopOpen ‘ ℂfld )
13 12 restid ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) )
14 11 13 ax-mp ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld )
15 14 eqcomi ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ )
16 4 10 15 cncfcn ( ( 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑋cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) )
17 1 9 16 syl2anc ( 𝜑 → ( 𝑋cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) )
18 17 adantr ( ( 𝜑𝑘𝐴 ) → ( 𝑋cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) )
19 3 18 eleqtrd ( ( 𝜑𝑘𝐴 ) → ( 𝑥𝑋𝐵 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) )
20 4 8 2 19 fsumcnf ( 𝜑 → ( 𝑥𝑋 ↦ Σ 𝑘𝐴 𝐵 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) )
21 20 17 eleqtrrd ( 𝜑 → ( 𝑥𝑋 ↦ Σ 𝑘𝐴 𝐵 ) ∈ ( 𝑋cn→ ℂ ) )