Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcncf.x |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
2 |
|
fsumcncf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fsumcncf.cncf |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
4 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
5 |
4
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
7 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑋 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) |
8 |
6 1 7
|
syl2anc |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) |
9 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
10 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) |
11 |
4
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
12 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
13 |
12
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
14 |
11 13
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
15 |
14
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
16 |
4 10 15
|
cncfcn |
⊢ ( ( 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑋 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
17 |
1 9 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑋 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
19 |
3 18
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
20 |
4 8 2 19
|
fsumcnf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
21 |
20 17
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) |