Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcnf.1 |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
2 |
|
fsumcnf.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
fsumcnf.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
4 |
|
fsumcnf.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 Σ 𝑘 ∈ 𝐴 𝐵 |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
8 |
6 7
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
9 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
10 |
9
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
11 |
5 8 10
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
13 |
12 7 9
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
14 |
13 4
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
15 |
1 2 3 14
|
fsumcn |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
16 |
11 15
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |