Metamath Proof Explorer


Theorem fsumcnf

Description: A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fsumcnf.1 𝐾 = ( TopOpen ‘ ℂfld )
fsumcnf.2 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
fsumcnf.3 ( 𝜑𝐴 ∈ Fin )
fsumcnf.4 ( ( 𝜑𝑘𝐴 ) → ( 𝑥𝑋𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
Assertion fsumcnf ( 𝜑 → ( 𝑥𝑋 ↦ Σ 𝑘𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )

Proof

Step Hyp Ref Expression
1 fsumcnf.1 𝐾 = ( TopOpen ‘ ℂfld )
2 fsumcnf.2 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 fsumcnf.3 ( 𝜑𝐴 ∈ Fin )
4 fsumcnf.4 ( ( 𝜑𝑘𝐴 ) → ( 𝑥𝑋𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
5 nfcv 𝑦 Σ 𝑘𝐴 𝐵
6 nfcv 𝑥 𝐴
7 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
8 6 7 nfsum 𝑥 Σ 𝑘𝐴 𝑦 / 𝑥 𝐵
9 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
10 9 sumeq2sdv ( 𝑥 = 𝑦 → Σ 𝑘𝐴 𝐵 = Σ 𝑘𝐴 𝑦 / 𝑥 𝐵 )
11 5 8 10 cbvmpt ( 𝑥𝑋 ↦ Σ 𝑘𝐴 𝐵 ) = ( 𝑦𝑋 ↦ Σ 𝑘𝐴 𝑦 / 𝑥 𝐵 )
12 nfcv 𝑦 𝐵
13 12 7 9 cbvmpt ( 𝑥𝑋𝐵 ) = ( 𝑦𝑋 𝑦 / 𝑥 𝐵 )
14 13 4 eqeltrrid ( ( 𝜑𝑘𝐴 ) → ( 𝑦𝑋 𝑦 / 𝑥 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
15 1 2 3 14 fsumcn ( 𝜑 → ( 𝑦𝑋 ↦ Σ 𝑘𝐴 𝑦 / 𝑥 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
16 11 15 eqeltrid ( 𝜑 → ( 𝑥𝑋 ↦ Σ 𝑘𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )