Description: Interchange order of summation. (Contributed by NM, 15-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcom.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumcom.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| fsumcom.3 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | ||
| Assertion | fsumcom | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ 𝐵 Σ 𝑗 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcom.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumcom.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 3 | fsumcom.3 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | |
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
| 5 | ancom | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐵 ∧ 𝑗 ∈ 𝐴 ) ) | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐵 ∧ 𝑗 ∈ 𝐴 ) ) ) |
| 7 | 1 2 4 6 3 | fsumcom2 | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ 𝐵 Σ 𝑗 ∈ 𝐴 𝐶 ) |