Metamath Proof Explorer


Theorem fsumcom

Description: Interchange order of summation. (Contributed by NM, 15-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsumcom.1 ( 𝜑𝐴 ∈ Fin )
fsumcom.2 ( 𝜑𝐵 ∈ Fin )
fsumcom.3 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ℂ )
Assertion fsumcom ( 𝜑 → Σ 𝑗𝐴 Σ 𝑘𝐵 𝐶 = Σ 𝑘𝐵 Σ 𝑗𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 fsumcom.1 ( 𝜑𝐴 ∈ Fin )
2 fsumcom.2 ( 𝜑𝐵 ∈ Fin )
3 fsumcom.3 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ℂ )
4 2 adantr ( ( 𝜑𝑗𝐴 ) → 𝐵 ∈ Fin )
5 ancom ( ( 𝑗𝐴𝑘𝐵 ) ↔ ( 𝑘𝐵𝑗𝐴 ) )
6 5 a1i ( 𝜑 → ( ( 𝑗𝐴𝑘𝐵 ) ↔ ( 𝑘𝐵𝑗𝐴 ) ) )
7 1 2 4 6 3 fsumcom2 ( 𝜑 → Σ 𝑗𝐴 Σ 𝑘𝐵 𝐶 = Σ 𝑘𝐵 Σ 𝑗𝐴 𝐶 )