Metamath Proof Explorer


Theorem fsumcom2

Description: Interchange order of summation. Note that B ( j ) and D ( k ) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014) (Revised by Mario Carneiro, 8-Apr-2016) (Proof shortened by JJ, 2-Aug-2021)

Ref Expression
Hypotheses fsumcom2.1 ( 𝜑𝐴 ∈ Fin )
fsumcom2.2 ( 𝜑𝐶 ∈ Fin )
fsumcom2.3 ( ( 𝜑𝑗𝐴 ) → 𝐵 ∈ Fin )
fsumcom2.4 ( 𝜑 → ( ( 𝑗𝐴𝑘𝐵 ) ↔ ( 𝑘𝐶𝑗𝐷 ) ) )
fsumcom2.5 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐸 ∈ ℂ )
Assertion fsumcom2 ( 𝜑 → Σ 𝑗𝐴 Σ 𝑘𝐵 𝐸 = Σ 𝑘𝐶 Σ 𝑗𝐷 𝐸 )

Proof

Step Hyp Ref Expression
1 fsumcom2.1 ( 𝜑𝐴 ∈ Fin )
2 fsumcom2.2 ( 𝜑𝐶 ∈ Fin )
3 fsumcom2.3 ( ( 𝜑𝑗𝐴 ) → 𝐵 ∈ Fin )
4 fsumcom2.4 ( 𝜑 → ( ( 𝑗𝐴𝑘𝐵 ) ↔ ( 𝑘𝐶𝑗𝐷 ) ) )
5 fsumcom2.5 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐸 ∈ ℂ )
6 relxp Rel ( { 𝑗 } × 𝐵 )
7 6 rgenw 𝑗𝐴 Rel ( { 𝑗 } × 𝐵 )
8 reliun ( Rel 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∀ 𝑗𝐴 Rel ( { 𝑗 } × 𝐵 ) )
9 7 8 mpbir Rel 𝑗𝐴 ( { 𝑗 } × 𝐵 )
10 relcnv Rel 𝑘𝐶 ( { 𝑘 } × 𝐷 )
11 ancom ( ( 𝑥 = 𝑗𝑦 = 𝑘 ) ↔ ( 𝑦 = 𝑘𝑥 = 𝑗 ) )
12 vex 𝑥 ∈ V
13 vex 𝑦 ∈ V
14 12 13 opth ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑗 , 𝑘 ⟩ ↔ ( 𝑥 = 𝑗𝑦 = 𝑘 ) )
15 13 12 opth ( ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝑘 , 𝑗 ⟩ ↔ ( 𝑦 = 𝑘𝑥 = 𝑗 ) )
16 11 14 15 3bitr4i ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑗 , 𝑘 ⟩ ↔ ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝑘 , 𝑗 ⟩ )
17 16 a1i ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑗 , 𝑘 ⟩ ↔ ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝑘 , 𝑗 ⟩ ) )
18 17 4 anbi12d ( 𝜑 → ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗𝐴𝑘𝐵 ) ) ↔ ( ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝑘 , 𝑗 ⟩ ∧ ( 𝑘𝐶𝑗𝐷 ) ) ) )
19 18 2exbidv ( 𝜑 → ( ∃ 𝑗𝑘 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗𝐴𝑘𝐵 ) ) ↔ ∃ 𝑗𝑘 ( ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝑘 , 𝑗 ⟩ ∧ ( 𝑘𝐶𝑗𝐷 ) ) ) )
20 eliunxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗𝑘 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗𝐴𝑘𝐵 ) ) )
21 12 13 opelcnv ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑘𝐶 ( { 𝑘 } × 𝐷 ) ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝑘𝐶 ( { 𝑘 } × 𝐷 ) )
22 eliunxp ( ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝑘𝐶 ( { 𝑘 } × 𝐷 ) ↔ ∃ 𝑘𝑗 ( ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝑘 , 𝑗 ⟩ ∧ ( 𝑘𝐶𝑗𝐷 ) ) )
23 excom ( ∃ 𝑘𝑗 ( ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝑘 , 𝑗 ⟩ ∧ ( 𝑘𝐶𝑗𝐷 ) ) ↔ ∃ 𝑗𝑘 ( ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝑘 , 𝑗 ⟩ ∧ ( 𝑘𝐶𝑗𝐷 ) ) )
24 21 22 23 3bitri ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑘𝐶 ( { 𝑘 } × 𝐷 ) ↔ ∃ 𝑗𝑘 ( ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝑘 , 𝑗 ⟩ ∧ ( 𝑘𝐶𝑗𝐷 ) ) )
25 19 20 24 3bitr4g ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑘𝐶 ( { 𝑘 } × 𝐷 ) ) )
26 9 10 25 eqrelrdv ( 𝜑 𝑗𝐴 ( { 𝑗 } × 𝐵 ) = 𝑘𝐶 ( { 𝑘 } × 𝐷 ) )
27 nfcv 𝑚 ( { 𝑗 } × 𝐵 )
28 nfcv 𝑗 { 𝑚 }
29 nfcsb1v 𝑗 𝑚 / 𝑗 𝐵
30 28 29 nfxp 𝑗 ( { 𝑚 } × 𝑚 / 𝑗 𝐵 )
31 sneq ( 𝑗 = 𝑚 → { 𝑗 } = { 𝑚 } )
32 csbeq1a ( 𝑗 = 𝑚𝐵 = 𝑚 / 𝑗 𝐵 )
33 31 32 xpeq12d ( 𝑗 = 𝑚 → ( { 𝑗 } × 𝐵 ) = ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) )
34 27 30 33 cbviun 𝑗𝐴 ( { 𝑗 } × 𝐵 ) = 𝑚𝐴 ( { 𝑚 } × 𝑚 / 𝑗 𝐵 )
35 nfcv 𝑛 ( { 𝑘 } × 𝐷 )
36 nfcv 𝑘 { 𝑛 }
37 nfcsb1v 𝑘 𝑛 / 𝑘 𝐷
38 36 37 nfxp 𝑘 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 )
39 sneq ( 𝑘 = 𝑛 → { 𝑘 } = { 𝑛 } )
40 csbeq1a ( 𝑘 = 𝑛𝐷 = 𝑛 / 𝑘 𝐷 )
41 39 40 xpeq12d ( 𝑘 = 𝑛 → ( { 𝑘 } × 𝐷 ) = ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) )
42 35 38 41 cbviun 𝑘𝐶 ( { 𝑘 } × 𝐷 ) = 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 )
43 42 cnveqi 𝑘𝐶 ( { 𝑘 } × 𝐷 ) = 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 )
44 26 34 43 3eqtr3g ( 𝜑 𝑚𝐴 ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) = 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) )
45 44 sumeq1d ( 𝜑 → Σ 𝑧 𝑚𝐴 ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) ( 2nd𝑧 ) / 𝑘 ( 1st𝑧 ) / 𝑗 𝐸 = Σ 𝑧 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ( 2nd𝑧 ) / 𝑘 ( 1st𝑧 ) / 𝑗 𝐸 )
46 vex 𝑛 ∈ V
47 vex 𝑚 ∈ V
48 46 47 op1std ( 𝑤 = ⟨ 𝑛 , 𝑚 ⟩ → ( 1st𝑤 ) = 𝑛 )
49 48 csbeq1d ( 𝑤 = ⟨ 𝑛 , 𝑚 ⟩ → ( 1st𝑤 ) / 𝑘 ( 2nd𝑤 ) / 𝑗 𝐸 = 𝑛 / 𝑘 ( 2nd𝑤 ) / 𝑗 𝐸 )
50 46 47 op2ndd ( 𝑤 = ⟨ 𝑛 , 𝑚 ⟩ → ( 2nd𝑤 ) = 𝑚 )
51 50 csbeq1d ( 𝑤 = ⟨ 𝑛 , 𝑚 ⟩ → ( 2nd𝑤 ) / 𝑗 𝐸 = 𝑚 / 𝑗 𝐸 )
52 51 csbeq2dv ( 𝑤 = ⟨ 𝑛 , 𝑚 ⟩ → 𝑛 / 𝑘 ( 2nd𝑤 ) / 𝑗 𝐸 = 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
53 49 52 eqtrd ( 𝑤 = ⟨ 𝑛 , 𝑚 ⟩ → ( 1st𝑤 ) / 𝑘 ( 2nd𝑤 ) / 𝑗 𝐸 = 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
54 47 46 op2ndd ( 𝑧 = ⟨ 𝑚 , 𝑛 ⟩ → ( 2nd𝑧 ) = 𝑛 )
55 54 csbeq1d ( 𝑧 = ⟨ 𝑚 , 𝑛 ⟩ → ( 2nd𝑧 ) / 𝑘 ( 1st𝑧 ) / 𝑗 𝐸 = 𝑛 / 𝑘 ( 1st𝑧 ) / 𝑗 𝐸 )
56 47 46 op1std ( 𝑧 = ⟨ 𝑚 , 𝑛 ⟩ → ( 1st𝑧 ) = 𝑚 )
57 56 csbeq1d ( 𝑧 = ⟨ 𝑚 , 𝑛 ⟩ → ( 1st𝑧 ) / 𝑗 𝐸 = 𝑚 / 𝑗 𝐸 )
58 57 csbeq2dv ( 𝑧 = ⟨ 𝑚 , 𝑛 ⟩ → 𝑛 / 𝑘 ( 1st𝑧 ) / 𝑗 𝐸 = 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
59 55 58 eqtrd ( 𝑧 = ⟨ 𝑚 , 𝑛 ⟩ → ( 2nd𝑧 ) / 𝑘 ( 1st𝑧 ) / 𝑗 𝐸 = 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
60 snfi { 𝑛 } ∈ Fin
61 1 adantr ( ( 𝜑𝑛𝐶 ) → 𝐴 ∈ Fin )
62 47 46 opelcnv ( ⟨ 𝑚 , 𝑛 ⟩ ∈ 𝑘𝐶 ( { 𝑘 } × 𝐷 ) ↔ ⟨ 𝑛 , 𝑚 ⟩ ∈ 𝑘𝐶 ( { 𝑘 } × 𝐷 ) )
63 37 40 opeliunxp2f ( ⟨ 𝑛 , 𝑚 ⟩ ∈ 𝑘𝐶 ( { 𝑘 } × 𝐷 ) ↔ ( 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 ) )
64 62 63 sylbbr ( ( 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 ) → ⟨ 𝑚 , 𝑛 ⟩ ∈ 𝑘𝐶 ( { 𝑘 } × 𝐷 ) )
65 64 adantl ( ( 𝜑 ∧ ( 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 ) ) → ⟨ 𝑚 , 𝑛 ⟩ ∈ 𝑘𝐶 ( { 𝑘 } × 𝐷 ) )
66 26 adantr ( ( 𝜑 ∧ ( 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 ) ) → 𝑗𝐴 ( { 𝑗 } × 𝐵 ) = 𝑘𝐶 ( { 𝑘 } × 𝐷 ) )
67 65 66 eleqtrrd ( ( 𝜑 ∧ ( 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 ) ) → ⟨ 𝑚 , 𝑛 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
68 eliun ( ⟨ 𝑚 , 𝑛 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗𝐴𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) )
69 67 68 sylib ( ( 𝜑 ∧ ( 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 ) ) → ∃ 𝑗𝐴𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) )
70 simpr ( ( 𝑗𝐴 ∧ ⟨ 𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) ) → ⟨ 𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) )
71 opelxp ( ⟨ 𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) ↔ ( 𝑚 ∈ { 𝑗 } ∧ 𝑛𝐵 ) )
72 70 71 sylib ( ( 𝑗𝐴 ∧ ⟨ 𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) ) → ( 𝑚 ∈ { 𝑗 } ∧ 𝑛𝐵 ) )
73 72 simpld ( ( 𝑗𝐴 ∧ ⟨ 𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑚 ∈ { 𝑗 } )
74 elsni ( 𝑚 ∈ { 𝑗 } → 𝑚 = 𝑗 )
75 73 74 syl ( ( 𝑗𝐴 ∧ ⟨ 𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑚 = 𝑗 )
76 simpl ( ( 𝑗𝐴 ∧ ⟨ 𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑗𝐴 )
77 75 76 eqeltrd ( ( 𝑗𝐴 ∧ ⟨ 𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑚𝐴 )
78 77 rexlimiva ( ∃ 𝑗𝐴𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) → 𝑚𝐴 )
79 69 78 syl ( ( 𝜑 ∧ ( 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 ) ) → 𝑚𝐴 )
80 79 expr ( ( 𝜑𝑛𝐶 ) → ( 𝑚 𝑛 / 𝑘 𝐷𝑚𝐴 ) )
81 80 ssrdv ( ( 𝜑𝑛𝐶 ) → 𝑛 / 𝑘 𝐷𝐴 )
82 61 81 ssfid ( ( 𝜑𝑛𝐶 ) → 𝑛 / 𝑘 𝐷 ∈ Fin )
83 xpfi ( ( { 𝑛 } ∈ Fin ∧ 𝑛 / 𝑘 𝐷 ∈ Fin ) → ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ∈ Fin )
84 60 82 83 sylancr ( ( 𝜑𝑛𝐶 ) → ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ∈ Fin )
85 84 ralrimiva ( 𝜑 → ∀ 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ∈ Fin )
86 iunfi ( ( 𝐶 ∈ Fin ∧ ∀ 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ∈ Fin ) → 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ∈ Fin )
87 2 85 86 syl2anc ( 𝜑 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ∈ Fin )
88 reliun ( Rel 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ↔ ∀ 𝑛𝐶 Rel ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) )
89 relxp Rel ( { 𝑛 } × 𝑛 / 𝑘 𝐷 )
90 89 a1i ( 𝑛𝐶 → Rel ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) )
91 88 90 mprgbir Rel 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 )
92 91 a1i ( 𝜑 → Rel 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) )
93 csbeq1 ( 𝑚 = ( 2nd𝑤 ) → 𝑚 / 𝑗 𝐸 = ( 2nd𝑤 ) / 𝑗 𝐸 )
94 93 csbeq2dv ( 𝑚 = ( 2nd𝑤 ) → ( 1st𝑤 ) / 𝑘 𝑚 / 𝑗 𝐸 = ( 1st𝑤 ) / 𝑘 ( 2nd𝑤 ) / 𝑗 𝐸 )
95 94 eleq1d ( 𝑚 = ( 2nd𝑤 ) → ( ( 1st𝑤 ) / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ ↔ ( 1st𝑤 ) / 𝑘 ( 2nd𝑤 ) / 𝑗 𝐸 ∈ ℂ ) )
96 csbeq1 ( 𝑛 = ( 1st𝑤 ) → 𝑛 / 𝑘 𝐷 = ( 1st𝑤 ) / 𝑘 𝐷 )
97 csbeq1 ( 𝑛 = ( 1st𝑤 ) → 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 = ( 1st𝑤 ) / 𝑘 𝑚 / 𝑗 𝐸 )
98 97 eleq1d ( 𝑛 = ( 1st𝑤 ) → ( 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ ↔ ( 1st𝑤 ) / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ ) )
99 96 98 raleqbidv ( 𝑛 = ( 1st𝑤 ) → ( ∀ 𝑚 𝑛 / 𝑘 𝐷 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ ↔ ∀ 𝑚 ( 1st𝑤 ) / 𝑘 𝐷 ( 1st𝑤 ) / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ ) )
100 simpl ( ( 𝜑 ∧ ( 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 ) ) → 𝜑 )
101 29 nfcri 𝑗 𝑛 𝑚 / 𝑗 𝐵
102 74 equcomd ( 𝑚 ∈ { 𝑗 } → 𝑗 = 𝑚 )
103 102 32 syl ( 𝑚 ∈ { 𝑗 } → 𝐵 = 𝑚 / 𝑗 𝐵 )
104 103 eleq2d ( 𝑚 ∈ { 𝑗 } → ( 𝑛𝐵𝑛 𝑚 / 𝑗 𝐵 ) )
105 104 biimpa ( ( 𝑚 ∈ { 𝑗 } ∧ 𝑛𝐵 ) → 𝑛 𝑚 / 𝑗 𝐵 )
106 71 105 sylbi ( ⟨ 𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) → 𝑛 𝑚 / 𝑗 𝐵 )
107 106 a1i ( 𝑗𝐴 → ( ⟨ 𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) → 𝑛 𝑚 / 𝑗 𝐵 ) )
108 101 107 rexlimi ( ∃ 𝑗𝐴𝑚 , 𝑛 ⟩ ∈ ( { 𝑗 } × 𝐵 ) → 𝑛 𝑚 / 𝑗 𝐵 )
109 69 108 syl ( ( 𝜑 ∧ ( 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 ) ) → 𝑛 𝑚 / 𝑗 𝐵 )
110 5 ralrimivva ( 𝜑 → ∀ 𝑗𝐴𝑘𝐵 𝐸 ∈ ℂ )
111 nfcsb1v 𝑗 𝑚 / 𝑗 𝐸
112 111 nfel1 𝑗 𝑚 / 𝑗 𝐸 ∈ ℂ
113 29 112 nfralw 𝑗𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐸 ∈ ℂ
114 csbeq1a ( 𝑗 = 𝑚𝐸 = 𝑚 / 𝑗 𝐸 )
115 114 eleq1d ( 𝑗 = 𝑚 → ( 𝐸 ∈ ℂ ↔ 𝑚 / 𝑗 𝐸 ∈ ℂ ) )
116 32 115 raleqbidv ( 𝑗 = 𝑚 → ( ∀ 𝑘𝐵 𝐸 ∈ ℂ ↔ ∀ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐸 ∈ ℂ ) )
117 113 116 rspc ( 𝑚𝐴 → ( ∀ 𝑗𝐴𝑘𝐵 𝐸 ∈ ℂ → ∀ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐸 ∈ ℂ ) )
118 110 117 mpan9 ( ( 𝜑𝑚𝐴 ) → ∀ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐸 ∈ ℂ )
119 nfcsb1v 𝑘 𝑛 / 𝑘 𝑚 / 𝑗 𝐸
120 119 nfel1 𝑘 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ
121 csbeq1a ( 𝑘 = 𝑛 𝑚 / 𝑗 𝐸 = 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
122 121 eleq1d ( 𝑘 = 𝑛 → ( 𝑚 / 𝑗 𝐸 ∈ ℂ ↔ 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ ) )
123 120 122 rspc ( 𝑛 𝑚 / 𝑗 𝐵 → ( ∀ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐸 ∈ ℂ → 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ ) )
124 118 123 syl5com ( ( 𝜑𝑚𝐴 ) → ( 𝑛 𝑚 / 𝑗 𝐵 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ ) )
125 124 impr ( ( 𝜑 ∧ ( 𝑚𝐴𝑛 𝑚 / 𝑗 𝐵 ) ) → 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ )
126 100 79 109 125 syl12anc ( ( 𝜑 ∧ ( 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 ) ) → 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ )
127 126 ralrimivva ( 𝜑 → ∀ 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ )
128 127 adantr ( ( 𝜑𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ∀ 𝑛𝐶𝑚 𝑛 / 𝑘 𝐷 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ )
129 simpr ( ( 𝜑𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → 𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) )
130 eliun ( 𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ↔ ∃ 𝑛𝐶 𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) )
131 129 130 sylib ( ( 𝜑𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ∃ 𝑛𝐶 𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) )
132 xp1st ( 𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) → ( 1st𝑤 ) ∈ { 𝑛 } )
133 132 adantl ( ( 𝑛𝐶𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ( 1st𝑤 ) ∈ { 𝑛 } )
134 elsni ( ( 1st𝑤 ) ∈ { 𝑛 } → ( 1st𝑤 ) = 𝑛 )
135 133 134 syl ( ( 𝑛𝐶𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ( 1st𝑤 ) = 𝑛 )
136 simpl ( ( 𝑛𝐶𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → 𝑛𝐶 )
137 135 136 eqeltrd ( ( 𝑛𝐶𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ( 1st𝑤 ) ∈ 𝐶 )
138 137 rexlimiva ( ∃ 𝑛𝐶 𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) → ( 1st𝑤 ) ∈ 𝐶 )
139 131 138 syl ( ( 𝜑𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ( 1st𝑤 ) ∈ 𝐶 )
140 99 128 139 rspcdva ( ( 𝜑𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ∀ 𝑚 ( 1st𝑤 ) / 𝑘 𝐷 ( 1st𝑤 ) / 𝑘 𝑚 / 𝑗 𝐸 ∈ ℂ )
141 xp2nd ( 𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) → ( 2nd𝑤 ) ∈ 𝑛 / 𝑘 𝐷 )
142 141 adantl ( ( 𝑛𝐶𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ( 2nd𝑤 ) ∈ 𝑛 / 𝑘 𝐷 )
143 135 csbeq1d ( ( 𝑛𝐶𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ( 1st𝑤 ) / 𝑘 𝐷 = 𝑛 / 𝑘 𝐷 )
144 142 143 eleqtrrd ( ( 𝑛𝐶𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ( 2nd𝑤 ) ∈ ( 1st𝑤 ) / 𝑘 𝐷 )
145 144 rexlimiva ( ∃ 𝑛𝐶 𝑤 ∈ ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) → ( 2nd𝑤 ) ∈ ( 1st𝑤 ) / 𝑘 𝐷 )
146 131 145 syl ( ( 𝜑𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ( 2nd𝑤 ) ∈ ( 1st𝑤 ) / 𝑘 𝐷 )
147 95 140 146 rspcdva ( ( 𝜑𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ) → ( 1st𝑤 ) / 𝑘 ( 2nd𝑤 ) / 𝑗 𝐸 ∈ ℂ )
148 53 59 87 92 147 fsumcnv ( 𝜑 → Σ 𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ( 1st𝑤 ) / 𝑘 ( 2nd𝑤 ) / 𝑗 𝐸 = Σ 𝑧 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ( 2nd𝑧 ) / 𝑘 ( 1st𝑧 ) / 𝑗 𝐸 )
149 45 148 eqtr4d ( 𝜑 → Σ 𝑧 𝑚𝐴 ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) ( 2nd𝑧 ) / 𝑘 ( 1st𝑧 ) / 𝑗 𝐸 = Σ 𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ( 1st𝑤 ) / 𝑘 ( 2nd𝑤 ) / 𝑗 𝐸 )
150 3 ralrimiva ( 𝜑 → ∀ 𝑗𝐴 𝐵 ∈ Fin )
151 29 nfel1 𝑗 𝑚 / 𝑗 𝐵 ∈ Fin
152 32 eleq1d ( 𝑗 = 𝑚 → ( 𝐵 ∈ Fin ↔ 𝑚 / 𝑗 𝐵 ∈ Fin ) )
153 151 152 rspc ( 𝑚𝐴 → ( ∀ 𝑗𝐴 𝐵 ∈ Fin → 𝑚 / 𝑗 𝐵 ∈ Fin ) )
154 150 153 mpan9 ( ( 𝜑𝑚𝐴 ) → 𝑚 / 𝑗 𝐵 ∈ Fin )
155 59 1 154 125 fsum2d ( 𝜑 → Σ 𝑚𝐴 Σ 𝑛 𝑚 / 𝑗 𝐵 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 = Σ 𝑧 𝑚𝐴 ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) ( 2nd𝑧 ) / 𝑘 ( 1st𝑧 ) / 𝑗 𝐸 )
156 53 2 82 126 fsum2d ( 𝜑 → Σ 𝑛𝐶 Σ 𝑚 𝑛 / 𝑘 𝐷 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 = Σ 𝑤 𝑛𝐶 ( { 𝑛 } × 𝑛 / 𝑘 𝐷 ) ( 1st𝑤 ) / 𝑘 ( 2nd𝑤 ) / 𝑗 𝐸 )
157 149 155 156 3eqtr4d ( 𝜑 → Σ 𝑚𝐴 Σ 𝑛 𝑚 / 𝑗 𝐵 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 = Σ 𝑛𝐶 Σ 𝑚 𝑛 / 𝑘 𝐷 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
158 nfcv 𝑚 Σ 𝑘𝐵 𝐸
159 nfcv 𝑗 𝑛
160 159 111 nfcsbw 𝑗 𝑛 / 𝑘 𝑚 / 𝑗 𝐸
161 29 160 nfsum 𝑗 Σ 𝑛 𝑚 / 𝑗 𝐵 𝑛 / 𝑘 𝑚 / 𝑗 𝐸
162 nfcv 𝑛 𝐸
163 nfcsb1v 𝑘 𝑛 / 𝑘 𝐸
164 csbeq1a ( 𝑘 = 𝑛𝐸 = 𝑛 / 𝑘 𝐸 )
165 162 163 164 cbvsumi Σ 𝑘𝐵 𝐸 = Σ 𝑛𝐵 𝑛 / 𝑘 𝐸
166 114 csbeq2dv ( 𝑗 = 𝑚 𝑛 / 𝑘 𝐸 = 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
167 166 adantr ( ( 𝑗 = 𝑚𝑛𝐵 ) → 𝑛 / 𝑘 𝐸 = 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
168 32 167 sumeq12dv ( 𝑗 = 𝑚 → Σ 𝑛𝐵 𝑛 / 𝑘 𝐸 = Σ 𝑛 𝑚 / 𝑗 𝐵 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
169 165 168 eqtrid ( 𝑗 = 𝑚 → Σ 𝑘𝐵 𝐸 = Σ 𝑛 𝑚 / 𝑗 𝐵 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
170 158 161 169 cbvsumi Σ 𝑗𝐴 Σ 𝑘𝐵 𝐸 = Σ 𝑚𝐴 Σ 𝑛 𝑚 / 𝑗 𝐵 𝑛 / 𝑘 𝑚 / 𝑗 𝐸
171 nfcv 𝑛 Σ 𝑗𝐷 𝐸
172 37 119 nfsum 𝑘 Σ 𝑚 𝑛 / 𝑘 𝐷 𝑛 / 𝑘 𝑚 / 𝑗 𝐸
173 nfcv 𝑚 𝐸
174 173 111 114 cbvsumi Σ 𝑗𝐷 𝐸 = Σ 𝑚𝐷 𝑚 / 𝑗 𝐸
175 121 adantr ( ( 𝑘 = 𝑛𝑚𝐷 ) → 𝑚 / 𝑗 𝐸 = 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
176 40 175 sumeq12dv ( 𝑘 = 𝑛 → Σ 𝑚𝐷 𝑚 / 𝑗 𝐸 = Σ 𝑚 𝑛 / 𝑘 𝐷 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
177 174 176 eqtrid ( 𝑘 = 𝑛 → Σ 𝑗𝐷 𝐸 = Σ 𝑚 𝑛 / 𝑘 𝐷 𝑛 / 𝑘 𝑚 / 𝑗 𝐸 )
178 171 172 177 cbvsumi Σ 𝑘𝐶 Σ 𝑗𝐷 𝐸 = Σ 𝑛𝐶 Σ 𝑚 𝑛 / 𝑘 𝐷 𝑛 / 𝑘 𝑚 / 𝑗 𝐸
179 157 170 178 3eqtr4g ( 𝜑 → Σ 𝑗𝐴 Σ 𝑘𝐵 𝐸 = Σ 𝑘𝐶 Σ 𝑗𝐷 𝐸 )