Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcom2.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumcom2.2 |
⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
3 |
|
fsumcom2.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
4 |
|
fsumcom2.4 |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) |
5 |
|
fsumcom2.5 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐸 ∈ ℂ ) |
6 |
|
relxp |
⊢ Rel ( { 𝑗 } × 𝐵 ) |
7 |
6
|
rgenw |
⊢ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐵 ) |
8 |
|
reliun |
⊢ ( Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐵 ) ) |
9 |
7 8
|
mpbir |
⊢ Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
10 |
|
relcnv |
⊢ Rel ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) |
11 |
|
ancom |
⊢ ( ( 𝑥 = 𝑗 ∧ 𝑦 = 𝑘 ) ↔ ( 𝑦 = 𝑘 ∧ 𝑥 = 𝑗 ) ) |
12 |
|
vex |
⊢ 𝑥 ∈ V |
13 |
|
vex |
⊢ 𝑦 ∈ V |
14 |
12 13
|
opth |
⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ↔ ( 𝑥 = 𝑗 ∧ 𝑦 = 𝑘 ) ) |
15 |
13 12
|
opth |
⊢ ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ↔ ( 𝑦 = 𝑘 ∧ 𝑥 = 𝑗 ) ) |
16 |
11 14 15
|
3bitr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ↔ 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ) |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ↔ 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ) ) |
18 |
17 4
|
anbi12d |
⊢ ( 𝜑 → ( ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) ) |
19 |
18
|
2exbidv |
⊢ ( 𝜑 → ( ∃ 𝑗 ∃ 𝑘 ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) ) |
20 |
|
eliunxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
21 |
12 13
|
opelcnv |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ 〈 𝑦 , 𝑥 〉 ∈ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
22 |
|
eliunxp |
⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ ∃ 𝑘 ∃ 𝑗 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) |
23 |
|
excom |
⊢ ( ∃ 𝑘 ∃ 𝑗 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) |
24 |
21 22 23
|
3bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) |
25 |
19 20 24
|
3bitr4g |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) ) |
26 |
9 10 25
|
eqrelrdv |
⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑚 ( { 𝑗 } × 𝐵 ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑗 { 𝑚 } |
29 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑚 / 𝑗 ⦌ 𝐵 |
30 |
28 29
|
nfxp |
⊢ Ⅎ 𝑗 ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
31 |
|
sneq |
⊢ ( 𝑗 = 𝑚 → { 𝑗 } = { 𝑚 } ) |
32 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
33 |
31 32
|
xpeq12d |
⊢ ( 𝑗 = 𝑚 → ( { 𝑗 } × 𝐵 ) = ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) ) |
34 |
27 30 33
|
cbviun |
⊢ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ∪ 𝑚 ∈ 𝐴 ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
35 |
|
nfcv |
⊢ Ⅎ 𝑛 ( { 𝑘 } × 𝐷 ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑘 { 𝑛 } |
37 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐷 |
38 |
36 37
|
nfxp |
⊢ Ⅎ 𝑘 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) |
39 |
|
sneq |
⊢ ( 𝑘 = 𝑛 → { 𝑘 } = { 𝑛 } ) |
40 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑛 → 𝐷 = ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) |
41 |
39 40
|
xpeq12d |
⊢ ( 𝑘 = 𝑛 → ( { 𝑘 } × 𝐷 ) = ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) |
42 |
35 38 41
|
cbviun |
⊢ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) = ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) |
43 |
42
|
cnveqi |
⊢ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) = ◡ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) |
44 |
26 34 43
|
3eqtr3g |
⊢ ( 𝜑 → ∪ 𝑚 ∈ 𝐴 ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) = ◡ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) |
45 |
44
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑧 ∈ ∪ 𝑚 ∈ 𝐴 ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = Σ 𝑧 ∈ ◡ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
46 |
|
vex |
⊢ 𝑛 ∈ V |
47 |
|
vex |
⊢ 𝑚 ∈ V |
48 |
46 47
|
op1std |
⊢ ( 𝑤 = 〈 𝑛 , 𝑚 〉 → ( 1st ‘ 𝑤 ) = 𝑛 ) |
49 |
48
|
csbeq1d |
⊢ ( 𝑤 = 〈 𝑛 , 𝑚 〉 → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
50 |
46 47
|
op2ndd |
⊢ ( 𝑤 = 〈 𝑛 , 𝑚 〉 → ( 2nd ‘ 𝑤 ) = 𝑚 ) |
51 |
50
|
csbeq1d |
⊢ ( 𝑤 = 〈 𝑛 , 𝑚 〉 → ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
52 |
51
|
csbeq2dv |
⊢ ( 𝑤 = 〈 𝑛 , 𝑚 〉 → ⦋ 𝑛 / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
53 |
49 52
|
eqtrd |
⊢ ( 𝑤 = 〈 𝑛 , 𝑚 〉 → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
54 |
47 46
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑚 , 𝑛 〉 → ( 2nd ‘ 𝑧 ) = 𝑛 ) |
55 |
54
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑚 , 𝑛 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
56 |
47 46
|
op1std |
⊢ ( 𝑧 = 〈 𝑚 , 𝑛 〉 → ( 1st ‘ 𝑧 ) = 𝑚 ) |
57 |
56
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑚 , 𝑛 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
58 |
57
|
csbeq2dv |
⊢ ( 𝑧 = 〈 𝑚 , 𝑛 〉 → ⦋ 𝑛 / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
59 |
55 58
|
eqtrd |
⊢ ( 𝑧 = 〈 𝑚 , 𝑛 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
60 |
|
snfi |
⊢ { 𝑛 } ∈ Fin |
61 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝐴 ∈ Fin ) |
62 |
47 46
|
opelcnv |
⊢ ( 〈 𝑚 , 𝑛 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ 〈 𝑛 , 𝑚 〉 ∈ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
63 |
37 40
|
opeliunxp2f |
⊢ ( 〈 𝑛 , 𝑚 〉 ∈ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ ( 𝑛 ∈ 𝐶 ∧ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) |
64 |
62 63
|
sylbbr |
⊢ ( ( 𝑛 ∈ 𝐶 ∧ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) → 〈 𝑚 , 𝑛 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝐶 ∧ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → 〈 𝑚 , 𝑛 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
66 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝐶 ∧ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
67 |
65 66
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝐶 ∧ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → 〈 𝑚 , 𝑛 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
68 |
|
eliun |
⊢ ( 〈 𝑚 , 𝑛 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ 𝐴 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) ) |
69 |
67 68
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝐶 ∧ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ∃ 𝑗 ∈ 𝐴 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) ) |
70 |
|
simpr |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) ) |
71 |
|
opelxp |
⊢ ( 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) ↔ ( 𝑚 ∈ { 𝑗 } ∧ 𝑛 ∈ 𝐵 ) ) |
72 |
70 71
|
sylib |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → ( 𝑚 ∈ { 𝑗 } ∧ 𝑛 ∈ 𝐵 ) ) |
73 |
72
|
simpld |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑚 ∈ { 𝑗 } ) |
74 |
|
elsni |
⊢ ( 𝑚 ∈ { 𝑗 } → 𝑚 = 𝑗 ) |
75 |
73 74
|
syl |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑚 = 𝑗 ) |
76 |
|
simpl |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑗 ∈ 𝐴 ) |
77 |
75 76
|
eqeltrd |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑚 ∈ 𝐴 ) |
78 |
77
|
rexlimiva |
⊢ ( ∃ 𝑗 ∈ 𝐴 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑚 ∈ 𝐴 ) |
79 |
69 78
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝐶 ∧ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → 𝑚 ∈ 𝐴 ) |
80 |
79
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 → 𝑚 ∈ 𝐴 ) ) |
81 |
80
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ⊆ 𝐴 ) |
82 |
61 81
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ∈ Fin ) |
83 |
|
xpfi |
⊢ ( ( { 𝑛 } ∈ Fin ∧ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ∈ Fin ) → ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
84 |
60 82 83
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
85 |
84
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
86 |
|
iunfi |
⊢ ( ( 𝐶 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) → ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
87 |
2 85 86
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
88 |
|
reliun |
⊢ ( Rel ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ↔ ∀ 𝑛 ∈ 𝐶 Rel ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) |
89 |
|
relxp |
⊢ Rel ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) |
90 |
89
|
a1i |
⊢ ( 𝑛 ∈ 𝐶 → Rel ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) |
91 |
88 90
|
mprgbir |
⊢ Rel ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) |
92 |
91
|
a1i |
⊢ ( 𝜑 → Rel ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) |
93 |
|
csbeq1 |
⊢ ( 𝑚 = ( 2nd ‘ 𝑤 ) → ⦋ 𝑚 / 𝑗 ⦌ 𝐸 = ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
94 |
93
|
csbeq2dv |
⊢ ( 𝑚 = ( 2nd ‘ 𝑤 ) → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 = ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
95 |
94
|
eleq1d |
⊢ ( 𝑚 = ( 2nd ‘ 𝑤 ) → ( ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
96 |
|
csbeq1 |
⊢ ( 𝑛 = ( 1st ‘ 𝑤 ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐷 = ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
97 |
|
csbeq1 |
⊢ ( 𝑛 = ( 1st ‘ 𝑤 ) → ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 = ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
98 |
97
|
eleq1d |
⊢ ( 𝑛 = ( 1st ‘ 𝑤 ) → ( ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
99 |
96 98
|
raleqbidv |
⊢ ( 𝑛 = ( 1st ‘ 𝑤 ) → ( ∀ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ∀ 𝑚 ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
100 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝐶 ∧ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → 𝜑 ) |
101 |
29
|
nfcri |
⊢ Ⅎ 𝑗 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 |
102 |
74
|
equcomd |
⊢ ( 𝑚 ∈ { 𝑗 } → 𝑗 = 𝑚 ) |
103 |
102 32
|
syl |
⊢ ( 𝑚 ∈ { 𝑗 } → 𝐵 = ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
104 |
103
|
eleq2d |
⊢ ( 𝑚 ∈ { 𝑗 } → ( 𝑛 ∈ 𝐵 ↔ 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) ) |
105 |
104
|
biimpa |
⊢ ( ( 𝑚 ∈ { 𝑗 } ∧ 𝑛 ∈ 𝐵 ) → 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
106 |
71 105
|
sylbi |
⊢ ( 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
107 |
106
|
a1i |
⊢ ( 𝑗 ∈ 𝐴 → ( 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) ) |
108 |
101 107
|
rexlimi |
⊢ ( ∃ 𝑗 ∈ 𝐴 〈 𝑚 , 𝑛 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
109 |
69 108
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝐶 ∧ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
110 |
5
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐵 𝐸 ∈ ℂ ) |
111 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑚 / 𝑗 ⦌ 𝐸 |
112 |
111
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ |
113 |
29 112
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ |
114 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑚 → 𝐸 = ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
115 |
114
|
eleq1d |
⊢ ( 𝑗 = 𝑚 → ( 𝐸 ∈ ℂ ↔ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
116 |
32 115
|
raleqbidv |
⊢ ( 𝑗 = 𝑚 → ( ∀ 𝑘 ∈ 𝐵 𝐸 ∈ ℂ ↔ ∀ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
117 |
113 116
|
rspc |
⊢ ( 𝑚 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐵 𝐸 ∈ ℂ → ∀ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
118 |
110 117
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → ∀ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
119 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 |
120 |
119
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ |
121 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑛 → ⦋ 𝑚 / 𝑗 ⦌ 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
122 |
121
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
123 |
120 122
|
rspc |
⊢ ( 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 → ( ∀ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ → ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
124 |
118 123
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → ( 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 → ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
125 |
124
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) ) → ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
126 |
100 79 109 125
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝐶 ∧ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
127 |
126
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐶 ∀ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
128 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ∀ 𝑛 ∈ 𝐶 ∀ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
129 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) |
130 |
|
eliun |
⊢ ( 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ↔ ∃ 𝑛 ∈ 𝐶 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) |
131 |
129 130
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ∃ 𝑛 ∈ 𝐶 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) |
132 |
|
xp1st |
⊢ ( 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) → ( 1st ‘ 𝑤 ) ∈ { 𝑛 } ) |
133 |
132
|
adantl |
⊢ ( ( 𝑛 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) ∈ { 𝑛 } ) |
134 |
|
elsni |
⊢ ( ( 1st ‘ 𝑤 ) ∈ { 𝑛 } → ( 1st ‘ 𝑤 ) = 𝑛 ) |
135 |
133 134
|
syl |
⊢ ( ( 𝑛 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) = 𝑛 ) |
136 |
|
simpl |
⊢ ( ( 𝑛 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → 𝑛 ∈ 𝐶 ) |
137 |
135 136
|
eqeltrd |
⊢ ( ( 𝑛 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) ∈ 𝐶 ) |
138 |
137
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ 𝐶 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) → ( 1st ‘ 𝑤 ) ∈ 𝐶 ) |
139 |
131 138
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) ∈ 𝐶 ) |
140 |
99 128 139
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ∀ 𝑚 ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
141 |
|
xp2nd |
⊢ ( 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) |
142 |
141
|
adantl |
⊢ ( ( 𝑛 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) |
143 |
135
|
csbeq1d |
⊢ ( ( 𝑛 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 = ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) |
144 |
142 143
|
eleqtrrd |
⊢ ( ( 𝑛 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
145 |
144
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ 𝐶 𝑤 ∈ ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
146 |
131 145
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
147 |
95 140 146
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ) → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
148 |
53 59 87 92 147
|
fsumcnv |
⊢ ( 𝜑 → Σ 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = Σ 𝑧 ∈ ◡ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
149 |
45 148
|
eqtr4d |
⊢ ( 𝜑 → Σ 𝑧 ∈ ∪ 𝑚 ∈ 𝐴 ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = Σ 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
150 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 𝐵 ∈ Fin ) |
151 |
29
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ∈ Fin |
152 |
32
|
eleq1d |
⊢ ( 𝑗 = 𝑚 → ( 𝐵 ∈ Fin ↔ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ∈ Fin ) ) |
153 |
151 152
|
rspc |
⊢ ( 𝑚 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 𝐵 ∈ Fin → ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ∈ Fin ) ) |
154 |
150 153
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ∈ Fin ) |
155 |
59 1 154 125
|
fsum2d |
⊢ ( 𝜑 → Σ 𝑚 ∈ 𝐴 Σ 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 = Σ 𝑧 ∈ ∪ 𝑚 ∈ 𝐴 ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
156 |
53 2 82 126
|
fsum2d |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐶 Σ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 = Σ 𝑤 ∈ ∪ 𝑛 ∈ 𝐶 ( { 𝑛 } × ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ) ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
157 |
149 155 156
|
3eqtr4d |
⊢ ( 𝜑 → Σ 𝑚 ∈ 𝐴 Σ 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 = Σ 𝑛 ∈ 𝐶 Σ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
158 |
|
nfcv |
⊢ Ⅎ 𝑚 Σ 𝑘 ∈ 𝐵 𝐸 |
159 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑛 |
160 |
159 111
|
nfcsbw |
⊢ Ⅎ 𝑗 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 |
161 |
29 160
|
nfsum |
⊢ Ⅎ 𝑗 Σ 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 |
162 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐸 |
163 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐸 |
164 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑛 → 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ 𝐸 ) |
165 |
162 163 164
|
cbvsumi |
⊢ Σ 𝑘 ∈ 𝐵 𝐸 = Σ 𝑛 ∈ 𝐵 ⦋ 𝑛 / 𝑘 ⦌ 𝐸 |
166 |
114
|
csbeq2dv |
⊢ ( 𝑗 = 𝑚 → ⦋ 𝑛 / 𝑘 ⦌ 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
167 |
166
|
adantr |
⊢ ( ( 𝑗 = 𝑚 ∧ 𝑛 ∈ 𝐵 ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
168 |
32 167
|
sumeq12dv |
⊢ ( 𝑗 = 𝑚 → Σ 𝑛 ∈ 𝐵 ⦋ 𝑛 / 𝑘 ⦌ 𝐸 = Σ 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
169 |
165 168
|
eqtrid |
⊢ ( 𝑗 = 𝑚 → Σ 𝑘 ∈ 𝐵 𝐸 = Σ 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
170 |
158 161 169
|
cbvsumi |
⊢ Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐸 = Σ 𝑚 ∈ 𝐴 Σ 𝑛 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 |
171 |
|
nfcv |
⊢ Ⅎ 𝑛 Σ 𝑗 ∈ 𝐷 𝐸 |
172 |
37 119
|
nfsum |
⊢ Ⅎ 𝑘 Σ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 |
173 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐸 |
174 |
173 111 114
|
cbvsumi |
⊢ Σ 𝑗 ∈ 𝐷 𝐸 = Σ 𝑚 ∈ 𝐷 ⦋ 𝑚 / 𝑗 ⦌ 𝐸 |
175 |
121
|
adantr |
⊢ ( ( 𝑘 = 𝑛 ∧ 𝑚 ∈ 𝐷 ) → ⦋ 𝑚 / 𝑗 ⦌ 𝐸 = ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
176 |
40 175
|
sumeq12dv |
⊢ ( 𝑘 = 𝑛 → Σ 𝑚 ∈ 𝐷 ⦋ 𝑚 / 𝑗 ⦌ 𝐸 = Σ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
177 |
174 176
|
eqtrid |
⊢ ( 𝑘 = 𝑛 → Σ 𝑗 ∈ 𝐷 𝐸 = Σ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 ) |
178 |
171 172 177
|
cbvsumi |
⊢ Σ 𝑘 ∈ 𝐶 Σ 𝑗 ∈ 𝐷 𝐸 = Σ 𝑛 ∈ 𝐶 Σ 𝑚 ∈ ⦋ 𝑛 / 𝑘 ⦌ 𝐷 ⦋ 𝑛 / 𝑘 ⦌ ⦋ 𝑚 / 𝑗 ⦌ 𝐸 |
179 |
157 170 178
|
3eqtr4g |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐸 = Σ 𝑘 ∈ 𝐶 Σ 𝑗 ∈ 𝐷 𝐸 ) |