Step |
Hyp |
Ref |
Expression |
1 |
|
mul02 |
⊢ ( 𝐵 ∈ ℂ → ( 0 · 𝐵 ) = 0 ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → ( 0 · 𝐵 ) = 0 ) |
3 |
2
|
eqcomd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → 0 = ( 0 · 𝐵 ) ) |
4 |
|
sumeq1 |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
5 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
7 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ) |
8 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
9 |
7 8
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( ♯ ‘ 𝐴 ) = 0 ) |
10 |
9
|
oveq1d |
⊢ ( 𝐴 = ∅ → ( ( ♯ ‘ 𝐴 ) · 𝐵 ) = ( 0 · 𝐵 ) ) |
11 |
6 10
|
eqeq12d |
⊢ ( 𝐴 = ∅ → ( Σ 𝑘 ∈ 𝐴 𝐵 = ( ( ♯ ‘ 𝐴 ) · 𝐵 ) ↔ 0 = ( 0 · 𝐵 ) ) ) |
12 |
3 11
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = ( ( ♯ ‘ 𝐴 ) · 𝐵 ) ) ) |
13 |
|
eqidd |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → 𝐵 = 𝐵 ) |
14 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
15 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
16 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
17 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
18 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
19 |
|
fvconst2g |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ( ( ℕ × { 𝐵 } ) ‘ 𝑛 ) = 𝐵 ) |
20 |
17 18 19
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ℕ × { 𝐵 } ) ‘ 𝑛 ) = 𝐵 ) |
21 |
13 14 15 16 20
|
fsum |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( + , ( ℕ × { 𝐵 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
22 |
|
ser1const |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 𝐵 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝐵 ) ) |
23 |
22
|
ad2ant2lr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( + , ( ℕ × { 𝐵 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝐵 ) ) |
24 |
21 23
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 = ( ( ♯ ‘ 𝐴 ) · 𝐵 ) ) |
25 |
24
|
expr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → Σ 𝑘 ∈ 𝐴 𝐵 = ( ( ♯ ‘ 𝐴 ) · 𝐵 ) ) ) |
26 |
25
|
exlimdv |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → Σ 𝑘 ∈ 𝐴 𝐵 = ( ( ♯ ‘ 𝐴 ) · 𝐵 ) ) ) |
27 |
26
|
expimpd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → Σ 𝑘 ∈ 𝐴 𝐵 = ( ( ♯ ‘ 𝐴 ) · 𝐵 ) ) ) |
28 |
|
fz1f1o |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
30 |
12 27 29
|
mpjaod |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ 𝐴 𝐵 = ( ( ♯ ‘ 𝐴 ) · 𝐵 ) ) |