Step |
Hyp |
Ref |
Expression |
1 |
|
summo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
2 |
|
summo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
sumrb.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
fsumcvg.4 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) |
5 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
6 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
8 |
|
seqex |
⊢ seq 𝑀 ( + , 𝐹 ) ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ V ) |
10 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
11 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
13 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
14 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
16 |
15 2
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
17 |
16
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) ) |
18 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
19 |
|
0cn |
⊢ 0 ∈ ℂ |
20 |
18 19
|
eqeltrdi |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
21 |
17 20
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
22 |
1
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
23 |
13 21 22
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
24 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
25 |
23 24
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
26 |
10 12 25
|
serf |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ ℂ ) |
27 |
26 3
|
ffvelrnd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
28 |
|
addid1 |
⊢ ( 𝑚 ∈ ℂ → ( 𝑚 + 0 ) = 𝑚 ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑚 ∈ ℂ ) → ( 𝑚 + 0 ) = 𝑚 ) |
30 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
32 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
33 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
34 |
|
eluzelz |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → 𝑚 ∈ ℤ ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ℤ ) |
36 |
4
|
sseld |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝐴 → 𝑚 ∈ ( 𝑀 ... 𝑁 ) ) ) |
37 |
|
fznuz |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ¬ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
38 |
36 37
|
syl6 |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝐴 → ¬ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
39 |
38
|
con2d |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ¬ 𝑚 ∈ 𝐴 ) ) |
40 |
39
|
imp |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ¬ 𝑚 ∈ 𝐴 ) |
41 |
35 40
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ( ℤ ∖ 𝐴 ) ) |
42 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) = 0 ↔ ( 𝐹 ‘ 𝑚 ) = 0 ) ) |
43 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → 𝑘 ∈ ℤ ) |
44 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ¬ 𝑘 ∈ 𝐴 ) |
45 |
44 18
|
syl |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
46 |
45 19
|
eqeltrdi |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
47 |
43 46 22
|
syl2anc |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
48 |
47 45
|
eqtrd |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
49 |
42 48
|
vtoclga |
⊢ ( 𝑚 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑚 ) = 0 ) |
50 |
41 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑚 ) = 0 ) |
51 |
33 50
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) = 0 ) |
52 |
51
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) = 0 ) |
53 |
29 30 31 32 52
|
seqid2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) |
54 |
53
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
55 |
5 7 9 27 54
|
climconst |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |