| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsers.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 2 |
|
fsumsers.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 3 |
|
fsumsers.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 4 |
|
fsumsers.4 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑚 if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑘 𝑚 ∈ 𝐴 |
| 7 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
| 9 |
6 7 8
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 0 ) |
| 10 |
|
eleq1w |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴 ) ) |
| 11 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 12 |
10 11
|
ifbieq1d |
⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 13 |
5 9 12
|
cbvmpt |
⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑚 ∈ ℤ ↦ if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 14 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 15 |
7
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 16 |
11
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 17 |
15 16
|
rspc |
⊢ ( 𝑚 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 18 |
14 17
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 19 |
13 18 2 4
|
fsumcvg |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ) ⇝ ( seq 𝑀 ( + , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ) ‘ 𝑁 ) ) |
| 20 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 21 |
2 20
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 22 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
| 23 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
| 25 |
24 3
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 26 |
25
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) ) |
| 27 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
| 28 |
|
0cn |
⊢ 0 ∈ ℂ |
| 29 |
27 28
|
eqeltrdi |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 30 |
26 29
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 31 |
|
eqid |
⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 32 |
31
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 33 |
22 30 32
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 34 |
1 33
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) ) |
| 35 |
34
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) ) |
| 36 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) |
| 37 |
36
|
nfeq2 |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑛 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) |
| 38 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 39 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) ) |
| 40 |
38 39
|
eqeq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) ) ) |
| 41 |
37 40
|
rspc |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) ) ) |
| 42 |
35 41
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) ) |
| 43 |
21 42
|
seqfeq |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( + , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 44 |
43
|
fveq1d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ) ‘ 𝑁 ) ) |
| 45 |
19 43 44
|
3brtr4d |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |