| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumcvg3.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | fsumcvg3.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | fsumcvg3.3 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 4 |  | fsumcvg3.4 | ⊢ ( 𝜑  →  𝐴  ⊆  𝑍 ) | 
						
							| 5 |  | fsumcvg3.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 ) ) | 
						
							| 6 |  | fsumcvg3.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | sseq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ⊆  ( 𝑀 ... 𝑛 )  ↔  ∅  ⊆  ( 𝑀 ... 𝑛 ) ) ) | 
						
							| 8 | 7 | rexbidv | ⊢ ( 𝐴  =  ∅  →  ( ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) 𝐴  ⊆  ( 𝑀 ... 𝑛 )  ↔  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ∅  ⊆  ( 𝑀 ... 𝑛 ) ) ) | 
						
							| 9 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  𝐴  ⊆  𝑍 ) | 
						
							| 10 | 9 1 | sseqtrdi | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 11 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  𝐴  ∈  Fin ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  𝐴  ≠  ∅ ) | 
						
							| 14 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 15 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 16 | 14 15 | sstri | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℝ | 
						
							| 17 | 1 16 | eqsstri | ⊢ 𝑍  ⊆  ℝ | 
						
							| 18 | 9 17 | sstrdi | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  𝐴  ⊆  ℝ ) | 
						
							| 19 | 12 13 18 | 3jca | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  𝐴  ⊆  ℝ ) ) | 
						
							| 20 |  | fisupcl | ⊢ ( (  <   Or  ℝ  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  𝐴  ⊆  ℝ ) )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  𝐴 ) | 
						
							| 21 | 11 19 20 | sylancr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  𝐴 ) | 
						
							| 22 | 10 21 | sseldd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 23 |  | fimaxre2 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑛  ∈  𝐴 𝑛  ≤  𝑘 ) | 
						
							| 24 | 18 12 23 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑛  ∈  𝐴 𝑛  ≤  𝑘 ) | 
						
							| 25 | 18 13 24 | 3jca | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑘  ∈  ℝ ∀ 𝑛  ∈  𝐴 𝑛  ≤  𝑘 ) ) | 
						
							| 26 |  | suprub | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑘  ∈  ℝ ∀ 𝑛  ∈  𝐴 𝑛  ≤  𝑘 )  ∧  𝑘  ∈  𝐴 )  →  𝑘  ≤  sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 27 | 25 26 | sylan | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  ∅ )  ∧  𝑘  ∈  𝐴 )  →  𝑘  ≤  sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 28 | 10 | sselda | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  ∅ )  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 29 | 14 22 | sselid | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℤ ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  ∅ )  ∧  𝑘  ∈  𝐴 )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℤ ) | 
						
							| 31 |  | elfz5 | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℤ )  →  ( 𝑘  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) )  ↔  𝑘  ≤  sup ( 𝐴 ,  ℝ ,   <  ) ) ) | 
						
							| 32 | 28 30 31 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  ∅ )  ∧  𝑘  ∈  𝐴 )  →  ( 𝑘  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) )  ↔  𝑘  ≤  sup ( 𝐴 ,  ℝ ,   <  ) ) ) | 
						
							| 33 | 27 32 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  ∅ )  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  ( 𝑘  ∈  𝐴  →  𝑘  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) ) | 
						
							| 35 | 34 | ssrdv | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  𝐴  ⊆  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑛  =  sup ( 𝐴 ,  ℝ ,   <  )  →  ( 𝑀 ... 𝑛 )  =  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) | 
						
							| 37 | 36 | sseq2d | ⊢ ( 𝑛  =  sup ( 𝐴 ,  ℝ ,   <  )  →  ( 𝐴  ⊆  ( 𝑀 ... 𝑛 )  ↔  𝐴  ⊆  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) ) | 
						
							| 38 | 37 | rspcev | ⊢ ( ( sup ( 𝐴 ,  ℝ ,   <  )  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐴  ⊆  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) )  →  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) 𝐴  ⊆  ( 𝑀 ... 𝑛 ) ) | 
						
							| 39 | 22 35 38 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) 𝐴  ⊆  ( 𝑀 ... 𝑛 ) ) | 
						
							| 40 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 41 | 2 40 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 42 |  | 0ss | ⊢ ∅  ⊆  ( 𝑀 ... 𝑀 ) | 
						
							| 43 |  | oveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑀 ... 𝑛 )  =  ( 𝑀 ... 𝑀 ) ) | 
						
							| 44 | 43 | sseq2d | ⊢ ( 𝑛  =  𝑀  →  ( ∅  ⊆  ( 𝑀 ... 𝑛 )  ↔  ∅  ⊆  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 45 | 44 | rspcev | ⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ∅  ⊆  ( 𝑀 ... 𝑀 ) )  →  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ∅  ⊆  ( 𝑀 ... 𝑛 ) ) | 
						
							| 46 | 41 42 45 | sylancl | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ∅  ⊆  ( 𝑀 ... 𝑛 ) ) | 
						
							| 47 | 8 39 46 | pm2.61ne | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) 𝐴  ⊆  ( 𝑀 ... 𝑛 ) ) | 
						
							| 48 | 1 | eleq2i | ⊢ ( 𝑘  ∈  𝑍  ↔  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 49 | 48 5 | sylan2br | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 ) ) | 
						
							| 50 | 49 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐴  ⊆  ( 𝑀 ... 𝑛 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 ) ) | 
						
							| 51 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐴  ⊆  ( 𝑀 ... 𝑛 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 52 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐴  ⊆  ( 𝑀 ... 𝑛 ) ) )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 53 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐴  ⊆  ( 𝑀 ... 𝑛 ) ) )  →  𝐴  ⊆  ( 𝑀 ... 𝑛 ) ) | 
						
							| 54 | 50 51 52 53 | fsumcvg2 | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐴  ⊆  ( 𝑀 ... 𝑛 ) ) )  →  seq 𝑀 (  +  ,  𝐹 )  ⇝  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 55 |  | climrel | ⊢ Rel   ⇝ | 
						
							| 56 | 55 | releldmi | ⊢ ( seq 𝑀 (  +  ,  𝐹 )  ⇝  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 57 | 54 56 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐴  ⊆  ( 𝑀 ... 𝑛 ) ) )  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 58 | 47 57 | rexlimddv | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) |