Step |
Hyp |
Ref |
Expression |
1 |
|
fsummulc2.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsummulc2.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
3 |
|
fsummulc2.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
4 |
|
fsumdivc.4 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
5 |
2 4
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ ) |
6 |
1 5 3
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · ( 1 / 𝐶 ) ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · ( 1 / 𝐶 ) ) ) |
7 |
1 3
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
8 |
7 2 4
|
divrecd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 · ( 1 / 𝐶 ) ) ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) |
11 |
3 9 10
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
12 |
11
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · ( 1 / 𝐶 ) ) ) |
13 |
6 8 12
|
3eqtr4d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) ) |