| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumdvds.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
fsumdvds.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 3 |
|
fsumdvds.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 4 |
|
fsumdvds.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ∥ 𝐵 ) |
| 5 |
|
0z |
⊢ 0 ∈ ℤ |
| 6 |
|
dvds0 |
⊢ ( 0 ∈ ℤ → 0 ∥ 0 ) |
| 7 |
5 6
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 0 ∥ 0 ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
| 9 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑁 = 0 ) |
| 10 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ∥ 𝐵 ) |
| 11 |
9 10
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 0 ∥ 𝐵 ) |
| 12 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 13 |
|
0dvds |
⊢ ( 𝐵 ∈ ℤ → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
| 15 |
11 14
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 = 0 ) |
| 16 |
15
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 0 ) |
| 17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝐴 ∈ Fin ) |
| 18 |
17
|
olcd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝐴 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝐴 ∈ Fin ) ) |
| 19 |
|
sumz |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝐴 ∈ Fin ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 21 |
16 20
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 22 |
7 8 21
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → 𝐴 ∈ Fin ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℤ ) |
| 25 |
24
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℂ ) |
| 26 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 27 |
26
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → 𝑁 ≠ 0 ) |
| 29 |
23 25 27 28
|
fsumdivc |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝑁 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 / 𝑁 ) ) |
| 30 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ∥ 𝐵 ) |
| 31 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ∈ ℤ ) |
| 32 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ≠ 0 ) |
| 33 |
|
dvdsval2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝑁 ∥ 𝐵 ↔ ( 𝐵 / 𝑁 ) ∈ ℤ ) ) |
| 34 |
31 32 26 33
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑁 ∥ 𝐵 ↔ ( 𝐵 / 𝑁 ) ∈ ℤ ) ) |
| 35 |
30 34
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 / 𝑁 ) ∈ ℤ ) |
| 36 |
23 35
|
fsumzcl |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → Σ 𝑘 ∈ 𝐴 ( 𝐵 / 𝑁 ) ∈ ℤ ) |
| 37 |
29 36
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝑁 ) ∈ ℤ ) |
| 38 |
1 3
|
fsumzcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| 40 |
|
dvdsval2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ( 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ↔ ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝑁 ) ∈ ℤ ) ) |
| 41 |
24 28 39 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → ( 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ↔ ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝑁 ) ∈ ℤ ) ) |
| 42 |
37 41
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 43 |
22 42
|
pm2.61dane |
⊢ ( 𝜑 → 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |