Metamath Proof Explorer


Theorem fsumdvdscom

Description: A double commutation of divisor sums based on fsumdvdsdiag . Note that A depends on both j and k . (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Hypotheses fsumdvdscom.1 ( 𝜑𝑁 ∈ ℕ )
fsumdvdscom.2 ( 𝑗 = ( 𝑘 · 𝑚 ) → 𝐴 = 𝐵 )
fsumdvdscom.3 ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } ) ) → 𝐴 ∈ ℂ )
Assertion fsumdvdscom ( 𝜑 → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 )

Proof

Step Hyp Ref Expression
1 fsumdvdscom.1 ( 𝜑𝑁 ∈ ℕ )
2 fsumdvdscom.2 ( 𝑗 = ( 𝑘 · 𝑚 ) → 𝐴 = 𝐵 )
3 fsumdvdscom.3 ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } ) ) → 𝐴 ∈ ℂ )
4 nfcv 𝑢 Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } 𝐴
5 nfcv 𝑗 { 𝑥 ∈ ℕ ∣ 𝑥𝑢 }
6 nfcsb1v 𝑗 𝑢 / 𝑗 𝐴
7 5 6 nfsum 𝑗 Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴
8 breq2 ( 𝑗 = 𝑢 → ( 𝑥𝑗𝑥𝑢 ) )
9 8 rabbidv ( 𝑗 = 𝑢 → { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } = { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } )
10 csbeq1a ( 𝑗 = 𝑢𝐴 = 𝑢 / 𝑗 𝐴 )
11 10 adantr ( ( 𝑗 = 𝑢𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } ) → 𝐴 = 𝑢 / 𝑗 𝐴 )
12 9 11 sumeq12dv ( 𝑗 = 𝑢 → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 )
13 4 7 12 cbvsumi Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } 𝐴 = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴
14 breq2 ( 𝑢 = ( 𝑁 / 𝑣 ) → ( 𝑥𝑢𝑥 ∥ ( 𝑁 / 𝑣 ) ) )
15 14 rabbidv ( 𝑢 = ( 𝑁 / 𝑣 ) → { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } )
16 csbeq1 ( 𝑢 = ( 𝑁 / 𝑣 ) → 𝑢 / 𝑗 𝐴 = ( 𝑁 / 𝑣 ) / 𝑗 𝐴 )
17 16 adantr ( ( 𝑢 = ( 𝑁 / 𝑣 ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } ) → 𝑢 / 𝑗 𝐴 = ( 𝑁 / 𝑣 ) / 𝑗 𝐴 )
18 15 17 sumeq12dv ( 𝑢 = ( 𝑁 / 𝑣 ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ( 𝑁 / 𝑣 ) / 𝑗 𝐴 )
19 fzfid ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin )
20 dvdsssfz1 ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ⊆ ( 1 ... 𝑁 ) )
21 1 20 syl ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ⊆ ( 1 ... 𝑁 ) )
22 19 21 ssfid ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∈ Fin )
23 eqid { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } = { 𝑥 ∈ ℕ ∣ 𝑥𝑁 }
24 eqid ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ↦ ( 𝑁 / 𝑧 ) ) = ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ↦ ( 𝑁 / 𝑧 ) )
25 23 24 dvdsflip ( 𝑁 ∈ ℕ → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ↦ ( 𝑁 / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } )
26 1 25 syl ( 𝜑 → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ↦ ( 𝑁 / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } )
27 oveq2 ( 𝑧 = 𝑣 → ( 𝑁 / 𝑧 ) = ( 𝑁 / 𝑣 ) )
28 ovex ( 𝑁 / 𝑧 ) ∈ V
29 27 24 28 fvmpt3i ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ↦ ( 𝑁 / 𝑧 ) ) ‘ 𝑣 ) = ( 𝑁 / 𝑣 ) )
30 29 adantl ( ( 𝜑𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ↦ ( 𝑁 / 𝑧 ) ) ‘ 𝑣 ) = ( 𝑁 / 𝑣 ) )
31 fzfid ( ( 𝜑𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 1 ... 𝑢 ) ∈ Fin )
32 ssrab2 { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ⊆ ℕ
33 simpr ( ( 𝜑𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } )
34 32 33 sseldi ( ( 𝜑𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑢 ∈ ℕ )
35 dvdsssfz1 ( 𝑢 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } ⊆ ( 1 ... 𝑢 ) )
36 34 35 syl ( ( 𝜑𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } ⊆ ( 1 ... 𝑢 ) )
37 31 36 ssfid ( ( 𝜑𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } ∈ Fin )
38 3 ralrimivva ( 𝜑 → ∀ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } 𝐴 ∈ ℂ )
39 nfv 𝑢𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } 𝐴 ∈ ℂ
40 6 nfel1 𝑗 𝑢 / 𝑗 𝐴 ∈ ℂ
41 5 40 nfralw 𝑗𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 ∈ ℂ
42 10 eleq1d ( 𝑗 = 𝑢 → ( 𝐴 ∈ ℂ ↔ 𝑢 / 𝑗 𝐴 ∈ ℂ ) )
43 9 42 raleqbidv ( 𝑗 = 𝑢 → ( ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } 𝐴 ∈ ℂ ↔ ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 ∈ ℂ ) )
44 39 41 43 cbvralw ( ∀ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } 𝐴 ∈ ℂ ↔ ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 ∈ ℂ )
45 38 44 sylib ( 𝜑 → ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 ∈ ℂ )
46 45 r19.21bi ( ( 𝜑𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 ∈ ℂ )
47 46 r19.21bi ( ( ( 𝜑𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } ) → 𝑢 / 𝑗 𝐴 ∈ ℂ )
48 37 47 fsumcl ( ( 𝜑𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 ∈ ℂ )
49 18 22 26 30 48 fsumf1o ( 𝜑 → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 = Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ( 𝑁 / 𝑣 ) / 𝑗 𝐴 )
50 16 eleq1d ( 𝑢 = ( 𝑁 / 𝑣 ) → ( 𝑢 / 𝑗 𝐴 ∈ ℂ ↔ ( 𝑁 / 𝑣 ) / 𝑗 𝐴 ∈ ℂ ) )
51 15 50 raleqbidv ( 𝑢 = ( 𝑁 / 𝑣 ) → ( ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 ∈ ℂ ↔ ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ( 𝑁 / 𝑣 ) / 𝑗 𝐴 ∈ ℂ ) )
52 45 adantr ( ( 𝜑𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 ∈ ℂ )
53 dvdsdivcl ( ( 𝑁 ∈ ℕ ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 𝑁 / 𝑣 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } )
54 1 53 sylan ( ( 𝜑𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 𝑁 / 𝑣 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } )
55 51 52 54 rspcdva ( ( 𝜑𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ( 𝑁 / 𝑣 ) / 𝑗 𝐴 ∈ ℂ )
56 55 r19.21bi ( ( ( 𝜑𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) → ( 𝑁 / 𝑣 ) / 𝑗 𝐴 ∈ ℂ )
57 56 anasss ( ( 𝜑 ∧ ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) ) → ( 𝑁 / 𝑣 ) / 𝑗 𝐴 ∈ ℂ )
58 1 57 fsumdvdsdiag ( 𝜑 → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ( 𝑁 / 𝑣 ) / 𝑗 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ( 𝑁 / 𝑣 ) / 𝑗 𝐴 )
59 oveq2 ( 𝑣 = ( ( 𝑁 / 𝑘 ) / 𝑚 ) → ( 𝑁 / 𝑣 ) = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) )
60 59 csbeq1d ( 𝑣 = ( ( 𝑁 / 𝑘 ) / 𝑚 ) → ( 𝑁 / 𝑣 ) / 𝑗 𝐴 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 𝐴 )
61 fzfid ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 1 ... ( 𝑁 / 𝑘 ) ) ∈ Fin )
62 dvdsdivcl ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } )
63 32 62 sseldi ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ ℕ )
64 1 63 sylan ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ ℕ )
65 dvdsssfz1 ( ( 𝑁 / 𝑘 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⊆ ( 1 ... ( 𝑁 / 𝑘 ) ) )
66 64 65 syl ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⊆ ( 1 ... ( 𝑁 / 𝑘 ) ) )
67 61 66 ssfid ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ∈ Fin )
68 eqid { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) }
69 eqid ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) = ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) )
70 68 69 dvdsflip ( ( 𝑁 / 𝑘 ) ∈ ℕ → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } )
71 64 70 syl ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } )
72 oveq2 ( 𝑧 = 𝑚 → ( ( 𝑁 / 𝑘 ) / 𝑧 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) )
73 ovex ( ( 𝑁 / 𝑘 ) / 𝑧 ) ∈ V
74 72 69 73 fvmpt3i ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) )
75 74 adantl ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) )
76 1 fsumdvdsdiaglem ( 𝜑 → ( ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) ) )
77 57 ex ( 𝜑 → ( ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) → ( 𝑁 / 𝑣 ) / 𝑗 𝐴 ∈ ℂ ) )
78 76 77 syld ( 𝜑 → ( ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / 𝑣 ) / 𝑗 𝐴 ∈ ℂ ) )
79 78 impl ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / 𝑣 ) / 𝑗 𝐴 ∈ ℂ )
80 60 67 71 75 79 fsumf1o ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ( 𝑁 / 𝑣 ) / 𝑗 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 𝐴 )
81 ovexd ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ∈ V )
82 nncn ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ )
83 nnne0 ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 )
84 82 83 jca ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) )
85 1 84 syl ( 𝜑 → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) )
86 85 ad2antrr ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) )
87 86 simpld ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑁 ∈ ℂ )
88 elrabi ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } → 𝑘 ∈ ℕ )
89 88 adantl ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑘 ∈ ℕ )
90 89 adantr ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑘 ∈ ℕ )
91 nncn ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ )
92 nnne0 ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 )
93 91 92 jca ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) )
94 90 93 syl ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) )
95 elrabi ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } → 𝑚 ∈ ℕ )
96 95 adantl ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑚 ∈ ℕ )
97 nncn ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ )
98 nnne0 ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 )
99 97 98 jca ( 𝑚 ∈ ℕ → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) )
100 96 99 syl ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) )
101 divdiv1 ( ( 𝑁 ∈ ℂ ∧ ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) → ( ( 𝑁 / 𝑘 ) / 𝑚 ) = ( 𝑁 / ( 𝑘 · 𝑚 ) ) )
102 87 94 100 101 syl3anc ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑁 / 𝑘 ) / 𝑚 ) = ( 𝑁 / ( 𝑘 · 𝑚 ) ) )
103 102 oveq2d ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) = ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) )
104 nnmulcl ( ( 𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 𝑘 · 𝑚 ) ∈ ℕ )
105 89 95 104 syl2an ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑘 · 𝑚 ) ∈ ℕ )
106 nncn ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( 𝑘 · 𝑚 ) ∈ ℂ )
107 nnne0 ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( 𝑘 · 𝑚 ) ≠ 0 )
108 106 107 jca ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) )
109 105 108 syl ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) )
110 ddcan ( ( ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ∧ ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) ) → ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) = ( 𝑘 · 𝑚 ) )
111 86 109 110 syl2anc ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) = ( 𝑘 · 𝑚 ) )
112 103 111 eqtrd ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) = ( 𝑘 · 𝑚 ) )
113 112 eqeq2d ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ↔ 𝑗 = ( 𝑘 · 𝑚 ) ) )
114 113 biimpa ( ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ∧ 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) → 𝑗 = ( 𝑘 · 𝑚 ) )
115 114 2 syl ( ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ∧ 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) → 𝐴 = 𝐵 )
116 81 115 csbied ( ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 𝐴 = 𝐵 )
117 116 sumeq2dv ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 )
118 80 117 eqtrd ( ( 𝜑𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ( 𝑁 / 𝑣 ) / 𝑗 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 )
119 118 sumeq2dv ( 𝜑 → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ( 𝑁 / 𝑣 ) / 𝑗 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 )
120 49 58 119 3eqtrd ( 𝜑 → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑢 } 𝑢 / 𝑗 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 )
121 13 120 syl5eq ( 𝜑 → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑗 } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 )