Step |
Hyp |
Ref |
Expression |
1 |
|
fsumdvdsdiag.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
breq1 |
⊢ ( 𝑥 = 𝑘 → ( 𝑥 ∥ 𝑁 ↔ 𝑘 ∥ 𝑁 ) ) |
3 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } → 𝑘 ∈ ℕ ) |
4 |
3
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∈ ℕ ) |
5 |
4
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∈ ℤ ) |
6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑁 ∈ ℕ ) |
7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
8 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
10 |
|
elrabi |
⊢ ( ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → ( 𝑁 / 𝑗 ) ∈ ℕ ) |
11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑗 ) ∈ ℕ ) |
12 |
11
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑗 ) ∈ ℤ ) |
13 |
6
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑁 ∈ ℤ ) |
14 |
|
breq1 |
⊢ ( 𝑥 = 𝑘 → ( 𝑥 ∥ ( 𝑁 / 𝑗 ) ↔ 𝑘 ∥ ( 𝑁 / 𝑗 ) ) ) |
15 |
14
|
elrab |
⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ∥ ( 𝑁 / 𝑗 ) ) ) |
16 |
15
|
simprbi |
⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } → 𝑘 ∥ ( 𝑁 / 𝑗 ) ) |
17 |
16
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∥ ( 𝑁 / 𝑗 ) ) |
18 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑁 / 𝑗 ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑁 / 𝑗 ) ∥ 𝑁 ) ) |
19 |
18
|
elrab |
⊢ ( ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↔ ( ( 𝑁 / 𝑗 ) ∈ ℕ ∧ ( 𝑁 / 𝑗 ) ∥ 𝑁 ) ) |
20 |
19
|
simprbi |
⊢ ( ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → ( 𝑁 / 𝑗 ) ∥ 𝑁 ) |
21 |
9 20
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑗 ) ∥ 𝑁 ) |
22 |
5 12 13 17 21
|
dvdstrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∥ 𝑁 ) |
23 |
2 4 22
|
elrabd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
24 |
|
breq1 |
⊢ ( 𝑥 = 𝑗 → ( 𝑥 ∥ ( 𝑁 / 𝑘 ) ↔ 𝑗 ∥ ( 𝑁 / 𝑘 ) ) ) |
25 |
|
elrabi |
⊢ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → 𝑗 ∈ ℕ ) |
26 |
25
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∈ ℕ ) |
27 |
26
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∈ ℤ ) |
28 |
26
|
nnne0d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ≠ 0 ) |
29 |
|
dvdsmulcr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑁 / 𝑗 ) ∈ ℤ ∧ ( 𝑗 ∈ ℤ ∧ 𝑗 ≠ 0 ) ) → ( ( 𝑘 · 𝑗 ) ∥ ( ( 𝑁 / 𝑗 ) · 𝑗 ) ↔ 𝑘 ∥ ( 𝑁 / 𝑗 ) ) ) |
30 |
5 12 27 28 29
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( ( 𝑘 · 𝑗 ) ∥ ( ( 𝑁 / 𝑗 ) · 𝑗 ) ↔ 𝑘 ∥ ( 𝑁 / 𝑗 ) ) ) |
31 |
17 30
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑘 · 𝑗 ) ∥ ( ( 𝑁 / 𝑗 ) · 𝑗 ) ) |
32 |
6
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑁 ∈ ℂ ) |
33 |
26
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∈ ℂ ) |
34 |
32 33 28
|
divcan1d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( ( 𝑁 / 𝑗 ) · 𝑗 ) = 𝑁 ) |
35 |
4
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∈ ℂ ) |
36 |
4
|
nnne0d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ≠ 0 ) |
37 |
32 35 36
|
divcan2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑘 · ( 𝑁 / 𝑘 ) ) = 𝑁 ) |
38 |
34 37
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( ( 𝑁 / 𝑗 ) · 𝑗 ) = ( 𝑘 · ( 𝑁 / 𝑘 ) ) ) |
39 |
31 38
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑘 · 𝑗 ) ∥ ( 𝑘 · ( 𝑁 / 𝑘 ) ) ) |
40 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ℕ |
41 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
42 |
6 23 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
43 |
40 42
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑘 ) ∈ ℕ ) |
44 |
43
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑘 ) ∈ ℤ ) |
45 |
|
dvdscmulr |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( 𝑁 / 𝑘 ) ∈ ℤ ∧ ( 𝑘 ∈ ℤ ∧ 𝑘 ≠ 0 ) ) → ( ( 𝑘 · 𝑗 ) ∥ ( 𝑘 · ( 𝑁 / 𝑘 ) ) ↔ 𝑗 ∥ ( 𝑁 / 𝑘 ) ) ) |
46 |
27 44 5 36 45
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( ( 𝑘 · 𝑗 ) ∥ ( 𝑘 · ( 𝑁 / 𝑘 ) ) ↔ 𝑗 ∥ ( 𝑁 / 𝑘 ) ) ) |
47 |
39 46
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∥ ( 𝑁 / 𝑘 ) ) |
48 |
24 26 47
|
elrabd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) |
49 |
23 48
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ) |
50 |
49
|
ex |
⊢ ( 𝜑 → ( ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) → ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ) ) |