Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsmulf1o.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
dvdsmulf1o.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
dvdsmulf1o.3 |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
4 |
|
dvdsmulf1o.x |
⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } |
5 |
|
dvdsmulf1o.y |
⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } |
6 |
|
dvdsmulf1o.z |
⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } |
7 |
|
fsumdvdsmul.4 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
8 |
|
fsumdvdsmul.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝐵 ∈ ℂ ) |
9 |
|
fsumdvdsmul.6 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → ( 𝐴 · 𝐵 ) = 𝐷 ) |
10 |
|
fsumdvdsmul.7 |
⊢ ( 𝑖 = ( 𝑗 · 𝑘 ) → 𝐶 = 𝐷 ) |
11 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
12 |
|
dvdsssfz1 |
⊢ ( 𝑀 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ⊆ ( 1 ... 𝑀 ) ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ⊆ ( 1 ... 𝑀 ) ) |
14 |
4 13
|
eqsstrid |
⊢ ( 𝜑 → 𝑋 ⊆ ( 1 ... 𝑀 ) ) |
15 |
11 14
|
ssfid |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
16 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
17 |
|
dvdsssfz1 |
⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
19 |
5 18
|
eqsstrid |
⊢ ( 𝜑 → 𝑌 ⊆ ( 1 ... 𝑁 ) ) |
20 |
16 19
|
ssfid |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
21 |
20 8
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑌 𝐵 ∈ ℂ ) |
22 |
15 21 7
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝑋 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑗 ∈ 𝑋 ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) ) |
23 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝑌 ∈ Fin ) |
24 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑌 ) → 𝐵 ∈ ℂ ) |
25 |
23 7 24
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑘 ∈ 𝑌 ( 𝐴 · 𝐵 ) ) |
26 |
9
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑌 ) → ( 𝐴 · 𝐵 ) = 𝐷 ) |
27 |
26
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → Σ 𝑘 ∈ 𝑌 ( 𝐴 · 𝐵 ) = Σ 𝑘 ∈ 𝑌 𝐷 ) |
28 |
25 27
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑘 ∈ 𝑌 𝐷 ) |
29 |
28
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 ) |
30 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( · ‘ 𝑧 ) = ( · ‘ 〈 𝑗 , 𝑘 〉 ) ) |
31 |
|
df-ov |
⊢ ( 𝑗 · 𝑘 ) = ( · ‘ 〈 𝑗 , 𝑘 〉 ) |
32 |
30 31
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( · ‘ 𝑧 ) = ( 𝑗 · 𝑘 ) ) |
33 |
32
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( 𝑗 · 𝑘 ) / 𝑖 ⦌ 𝐶 ) |
34 |
|
ovex |
⊢ ( 𝑗 · 𝑘 ) ∈ V |
35 |
34 10
|
csbie |
⊢ ⦋ ( 𝑗 · 𝑘 ) / 𝑖 ⦌ 𝐶 = 𝐷 |
36 |
33 35
|
eqtrdi |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = 𝐷 ) |
37 |
7
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐴 ∈ ℂ ) |
38 |
8
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐵 ∈ ℂ ) |
39 |
37 38
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
40 |
9 39
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐷 ∈ ℂ ) |
41 |
36 15 20 40
|
fsumxp |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
42 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐶 |
43 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 |
44 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ) |
45 |
42 43 44
|
cbvsumi |
⊢ Σ 𝑖 ∈ 𝑍 𝐶 = Σ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 |
46 |
|
csbeq1 |
⊢ ( 𝑤 = ( · ‘ 𝑧 ) → ⦋ 𝑤 / 𝑖 ⦌ 𝐶 = ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
47 |
|
xpfi |
⊢ ( ( 𝑋 ∈ Fin ∧ 𝑌 ∈ Fin ) → ( 𝑋 × 𝑌 ) ∈ Fin ) |
48 |
15 20 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ Fin ) |
49 |
1 2 3 4 5 6
|
dvdsmulf1o |
⊢ ( 𝜑 → ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ) |
50 |
|
fvres |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) |
52 |
40
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑋 ∀ 𝑘 ∈ 𝑌 𝐷 ∈ ℂ ) |
53 |
36
|
eleq1d |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ ) ) |
54 |
53
|
ralxp |
⊢ ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑗 ∈ 𝑋 ∀ 𝑘 ∈ 𝑌 𝐷 ∈ ℂ ) |
55 |
52 54
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
56 |
|
ax-mulf |
⊢ · : ( ℂ × ℂ ) ⟶ ℂ |
57 |
|
ffn |
⊢ ( · : ( ℂ × ℂ ) ⟶ ℂ → · Fn ( ℂ × ℂ ) ) |
58 |
56 57
|
ax-mp |
⊢ · Fn ( ℂ × ℂ ) |
59 |
4
|
ssrab3 |
⊢ 𝑋 ⊆ ℕ |
60 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
61 |
59 60
|
sstri |
⊢ 𝑋 ⊆ ℂ |
62 |
5
|
ssrab3 |
⊢ 𝑌 ⊆ ℕ |
63 |
62 60
|
sstri |
⊢ 𝑌 ⊆ ℂ |
64 |
|
xpss12 |
⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) |
65 |
61 63 64
|
mp2an |
⊢ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) |
66 |
46
|
eleq1d |
⊢ ( 𝑤 = ( · ‘ 𝑧 ) → ( ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
67 |
66
|
ralima |
⊢ ( ( · Fn ( ℂ × ℂ ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( ∀ 𝑤 ∈ ( · “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
68 |
58 65 67
|
mp2an |
⊢ ( ∀ 𝑤 ∈ ( · “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
69 |
|
df-ima |
⊢ ( · “ ( 𝑋 × 𝑌 ) ) = ran ( · ↾ ( 𝑋 × 𝑌 ) ) |
70 |
|
f1ofo |
⊢ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 → ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ) |
71 |
|
forn |
⊢ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 → ran ( · ↾ ( 𝑋 × 𝑌 ) ) = 𝑍 ) |
72 |
49 70 71
|
3syl |
⊢ ( 𝜑 → ran ( · ↾ ( 𝑋 × 𝑌 ) ) = 𝑍 ) |
73 |
69 72
|
syl5eq |
⊢ ( 𝜑 → ( · “ ( 𝑋 × 𝑌 ) ) = 𝑍 ) |
74 |
73
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ( · “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
75 |
68 74
|
bitr3id |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
76 |
55 75
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
77 |
76
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
78 |
46 48 49 51 77
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
79 |
45 78
|
syl5eq |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑍 𝐶 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
80 |
41 79
|
eqtr4d |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 = Σ 𝑖 ∈ 𝑍 𝐶 ) |
81 |
22 29 80
|
3eqtrd |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝑋 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑖 ∈ 𝑍 𝐶 ) |