Step |
Hyp |
Ref |
Expression |
1 |
|
mpodvdsmulf1o.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
mpodvdsmulf1o.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
mpodvdsmulf1o.3 |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
4 |
|
mpodvdsmulf1o.x |
⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } |
5 |
|
mpodvdsmulf1o.y |
⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } |
6 |
|
mpodvdsmulf1o.z |
⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } |
7 |
|
fsumdvdsmul.4 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
8 |
|
fsumdvdsmul.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝐵 ∈ ℂ ) |
9 |
|
fsumdvdsmul.6 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → ( 𝐴 · 𝐵 ) = 𝐷 ) |
10 |
|
fsumdvdsmul.7 |
⊢ ( 𝑖 = ( 𝑗 · 𝑘 ) → 𝐶 = 𝐷 ) |
11 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
12 |
|
dvdsssfz1 |
⊢ ( 𝑀 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ⊆ ( 1 ... 𝑀 ) ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ⊆ ( 1 ... 𝑀 ) ) |
14 |
4 13
|
eqsstrid |
⊢ ( 𝜑 → 𝑋 ⊆ ( 1 ... 𝑀 ) ) |
15 |
11 14
|
ssfid |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
16 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
17 |
|
dvdsssfz1 |
⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
19 |
5 18
|
eqsstrid |
⊢ ( 𝜑 → 𝑌 ⊆ ( 1 ... 𝑁 ) ) |
20 |
16 19
|
ssfid |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
21 |
20 8
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑌 𝐵 ∈ ℂ ) |
22 |
15 21 7
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝑋 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑗 ∈ 𝑋 ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) ) |
23 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝑌 ∈ Fin ) |
24 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑌 ) → 𝐵 ∈ ℂ ) |
25 |
23 7 24
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑘 ∈ 𝑌 ( 𝐴 · 𝐵 ) ) |
26 |
9
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑌 ) → ( 𝐴 · 𝐵 ) = 𝐷 ) |
27 |
26
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → Σ 𝑘 ∈ 𝑌 ( 𝐴 · 𝐵 ) = Σ 𝑘 ∈ 𝑌 𝐷 ) |
28 |
25 27
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑘 ∈ 𝑌 𝐷 ) |
29 |
28
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 ) |
30 |
|
elxpi |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ∃ 𝑢 ∃ 𝑣 ( 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) |
31 |
|
fveq2 |
⊢ ( 〈 𝑢 , 𝑣 〉 = 𝑧 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) ) |
32 |
31
|
eqcoms |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) ) |
33 |
|
fveq2 |
⊢ ( 〈 𝑢 , 𝑣 〉 = 𝑧 → ( · ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 𝑧 ) ) |
34 |
33
|
eqcoms |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( · ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 𝑧 ) ) |
35 |
32 34
|
eqeq12d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 〈 𝑢 , 𝑣 〉 ) ↔ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) ) |
36 |
35
|
biimpd |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 〈 𝑢 , 𝑣 〉 ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) ) |
37 |
4
|
ssrab3 |
⊢ 𝑋 ⊆ ℕ |
38 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
39 |
37 38
|
sstri |
⊢ 𝑋 ⊆ ℂ |
40 |
39
|
sseli |
⊢ ( 𝑢 ∈ 𝑋 → 𝑢 ∈ ℂ ) |
41 |
5
|
ssrab3 |
⊢ 𝑌 ⊆ ℕ |
42 |
41 38
|
sstri |
⊢ 𝑌 ⊆ ℂ |
43 |
42
|
sseli |
⊢ ( 𝑣 ∈ 𝑌 → 𝑣 ∈ ℂ ) |
44 |
|
ovmpot |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) = ( 𝑢 · 𝑣 ) ) |
45 |
|
df-ov |
⊢ ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) |
46 |
|
df-ov |
⊢ ( 𝑢 · 𝑣 ) = ( · ‘ 〈 𝑢 , 𝑣 〉 ) |
47 |
44 45 46
|
3eqtr3g |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 〈 𝑢 , 𝑣 〉 ) ) |
48 |
40 43 47
|
syl2an |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 〈 𝑢 , 𝑣 〉 ) ) |
49 |
36 48
|
impel |
⊢ ( ( 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) |
50 |
49
|
exlimivv |
⊢ ( ∃ 𝑢 ∃ 𝑣 ( 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) |
51 |
30 50
|
syl |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) |
52 |
51
|
eqcomd |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( · ‘ 𝑧 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) ) |
53 |
52
|
csbeq1d |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
54 |
53
|
sumeq2i |
⊢ Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 |
55 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( · ‘ 𝑧 ) = ( · ‘ 〈 𝑗 , 𝑘 〉 ) ) |
56 |
|
df-ov |
⊢ ( 𝑗 · 𝑘 ) = ( · ‘ 〈 𝑗 , 𝑘 〉 ) |
57 |
55 56
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( · ‘ 𝑧 ) = ( 𝑗 · 𝑘 ) ) |
58 |
57
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( 𝑗 · 𝑘 ) / 𝑖 ⦌ 𝐶 ) |
59 |
|
ovex |
⊢ ( 𝑗 · 𝑘 ) ∈ V |
60 |
59 10
|
csbie |
⊢ ⦋ ( 𝑗 · 𝑘 ) / 𝑖 ⦌ 𝐶 = 𝐷 |
61 |
58 60
|
eqtrdi |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = 𝐷 ) |
62 |
7
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐴 ∈ ℂ ) |
63 |
8
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐵 ∈ ℂ ) |
64 |
62 63
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
65 |
9 64
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐷 ∈ ℂ ) |
66 |
61 15 20 65
|
fsumxp |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
67 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐶 |
68 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 |
69 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ) |
70 |
67 68 69
|
cbvsumi |
⊢ Σ 𝑖 ∈ 𝑍 𝐶 = Σ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 |
71 |
|
csbeq1 |
⊢ ( 𝑤 = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) → ⦋ 𝑤 / 𝑖 ⦌ 𝐶 = ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
72 |
|
xpfi |
⊢ ( ( 𝑋 ∈ Fin ∧ 𝑌 ∈ Fin ) → ( 𝑋 × 𝑌 ) ∈ Fin ) |
73 |
15 20 72
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ Fin ) |
74 |
1 2 3 4 5 6
|
mpodvdsmulf1o |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ) |
75 |
|
fvres |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) ) |
76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) ) |
77 |
65
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑋 ∀ 𝑘 ∈ 𝑌 𝐷 ∈ ℂ ) |
78 |
61
|
eleq1d |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ ) ) |
79 |
78
|
ralxp |
⊢ ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑗 ∈ 𝑋 ∀ 𝑘 ∈ 𝑌 𝐷 ∈ ℂ ) |
80 |
77 79
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
81 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( · ‘ 𝑧 ) = ( · ‘ 𝑤 ) ) |
82 |
81
|
csbeq1d |
⊢ ( 𝑧 = 𝑤 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ) |
83 |
82
|
eleq1d |
⊢ ( 𝑧 = 𝑤 → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
84 |
83
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
85 |
|
id |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → 𝑧 ∈ ( 𝑋 × 𝑌 ) ) |
86 |
82
|
eqcoms |
⊢ ( 𝑤 = 𝑧 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ) |
87 |
86
|
adantl |
⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = 𝑧 ) → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ) |
88 |
87
|
eleq1d |
⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = 𝑧 ) → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
89 |
53
|
eleq1d |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
90 |
89
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = 𝑧 ) → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
91 |
88 90
|
bitr3d |
⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = 𝑧 ) → ( ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
92 |
85 91
|
rspcdv |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ → ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
93 |
92
|
com12 |
⊢ ( ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
94 |
93
|
ralrimiv |
⊢ ( ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ → ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
95 |
84 94
|
sylbi |
⊢ ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ → ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
96 |
80 95
|
syl |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
97 |
|
mpomulf |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ |
98 |
|
ffn |
⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) ) |
99 |
97 98
|
ax-mp |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) |
100 |
|
xpss12 |
⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) |
101 |
39 42 100
|
mp2an |
⊢ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) |
102 |
71
|
eleq1d |
⊢ ( 𝑤 = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) → ( ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
103 |
102
|
ralima |
⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( ∀ 𝑤 ∈ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
104 |
99 101 103
|
mp2an |
⊢ ( ∀ 𝑤 ∈ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
105 |
|
df-ima |
⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) “ ( 𝑋 × 𝑌 ) ) = ran ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) |
106 |
|
f1ofo |
⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ) |
107 |
|
forn |
⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 → ran ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) = 𝑍 ) |
108 |
74 106 107
|
3syl |
⊢ ( 𝜑 → ran ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) = 𝑍 ) |
109 |
105 108
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) “ ( 𝑋 × 𝑌 ) ) = 𝑍 ) |
110 |
109
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
111 |
104 110
|
bitr3id |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
112 |
96 111
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
113 |
112
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
114 |
71 73 74 76 113
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
115 |
70 114
|
eqtrid |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑍 𝐶 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
116 |
54 66 115
|
3eqtr4a |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 = Σ 𝑖 ∈ 𝑍 𝐶 ) |
117 |
22 29 116
|
3eqtrd |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝑋 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑖 ∈ 𝑍 𝐶 ) |