Step |
Hyp |
Ref |
Expression |
1 |
|
fsumf1o.1 |
⊢ ( 𝑘 = 𝐺 → 𝐵 = 𝐷 ) |
2 |
|
fsumf1o.2 |
⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
3 |
|
fsumf1o.3 |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
4 |
|
fsumf1o.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) |
5 |
|
fsumf1o.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
6 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
7 |
|
f1oeq2 |
⊢ ( 𝐶 = ∅ → ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 ↔ 𝐹 : ∅ –1-1-onto→ 𝐴 ) ) |
8 |
3 7
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝐶 = ∅ → 𝐹 : ∅ –1-1-onto→ 𝐴 ) ) |
9 |
8
|
imp |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → 𝐹 : ∅ –1-1-onto→ 𝐴 ) |
10 |
|
f1ofo |
⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴 → 𝐹 : ∅ –onto→ 𝐴 ) |
11 |
|
fo00 |
⊢ ( 𝐹 : ∅ –onto→ 𝐴 ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) ) |
12 |
11
|
simprbi |
⊢ ( 𝐹 : ∅ –onto→ 𝐴 → 𝐴 = ∅ ) |
13 |
9 10 12
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → 𝐴 = ∅ ) |
14 |
13
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → 𝐶 = ∅ ) |
16 |
15
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → Σ 𝑛 ∈ 𝐶 𝐷 = Σ 𝑛 ∈ ∅ 𝐷 ) |
17 |
|
sum0 |
⊢ Σ 𝑛 ∈ ∅ 𝐷 = 0 |
18 |
16 17
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → Σ 𝑛 ∈ 𝐶 𝐷 = 0 ) |
19 |
6 14 18
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑛 ∈ 𝐶 𝐷 ) |
20 |
19
|
ex |
⊢ ( 𝜑 → ( 𝐶 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑛 ∈ 𝐶 𝐷 ) ) |
21 |
|
2fveq3 |
⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
22 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ( ♯ ‘ 𝐶 ) ∈ ℕ ) |
23 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) |
24 |
|
f1of |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
25 |
3 24
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
26 |
25
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑚 ) ∈ 𝐴 ) |
27 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
28 |
27
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ∈ ℂ ) |
29 |
26 28
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐶 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ∈ ℂ ) |
30 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑚 ∈ 𝐶 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ∈ ℂ ) |
31 |
|
f1oco |
⊢ ( ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐴 ) |
32 |
3 23 31
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐴 ) |
33 |
|
f1of |
⊢ ( ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐴 → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐴 ) |
34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐴 ) |
35 |
|
fvco3 |
⊢ ( ( ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) ) ) |
36 |
34 35
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) ) ) |
37 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶 ) |
38 |
37
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶 ) |
39 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
40 |
38 39
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
41 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
42 |
36 41
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
43 |
21 22 23 30 42
|
fsum |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → Σ 𝑚 ∈ 𝐶 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ ( 𝐹 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝐶 ) ) ) |
44 |
25
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) |
45 |
4 44
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝐺 ∈ 𝐴 ) |
46 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
47 |
1 46
|
fvmpti |
⊢ ( 𝐺 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝐺 ) = ( I ‘ 𝐷 ) ) |
48 |
45 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝐺 ) = ( I ‘ 𝐷 ) ) |
49 |
4
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝐺 ) ) |
50 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) = ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) |
51 |
50
|
fvmpt2i |
⊢ ( 𝑛 ∈ 𝐶 → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( I ‘ 𝐷 ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( I ‘ 𝐷 ) ) |
53 |
48 49 52
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
54 |
53
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐶 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
55 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) |
56 |
55
|
nfeq1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) |
57 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) ) |
58 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
59 |
57 58
|
eqeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) ↔ ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) |
60 |
56 59
|
rspc |
⊢ ( 𝑚 ∈ 𝐶 → ( ∀ 𝑛 ∈ 𝐶 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) |
61 |
54 60
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐶 ) → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
62 |
61
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑚 ∈ 𝐶 ) → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
63 |
62
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → Σ 𝑚 ∈ 𝐶 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = Σ 𝑚 ∈ 𝐶 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
64 |
|
fveq2 |
⊢ ( 𝑚 = ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) ) ) |
65 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
66 |
65
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ∈ ℂ ) |
67 |
64 22 32 66 36
|
fsum |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ ( 𝐹 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝐶 ) ) ) |
68 |
43 63 67
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = Σ 𝑚 ∈ 𝐶 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) ) |
69 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 𝐵 |
70 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝐶 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = Σ 𝑛 ∈ 𝐶 𝐷 |
71 |
68 69 70
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑛 ∈ 𝐶 𝐷 ) |
72 |
71
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐶 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑛 ∈ 𝐶 𝐷 ) ) |
73 |
72
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐶 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑛 ∈ 𝐶 𝐷 ) ) |
74 |
73
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑛 ∈ 𝐶 𝐷 ) ) |
75 |
|
fz1f1o |
⊢ ( 𝐶 ∈ Fin → ( 𝐶 = ∅ ∨ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ) |
76 |
2 75
|
syl |
⊢ ( 𝜑 → ( 𝐶 = ∅ ∨ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ) |
77 |
20 74 76
|
mpjaod |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑛 ∈ 𝐶 𝐷 ) |