Step |
Hyp |
Ref |
Expression |
1 |
|
fsumf1of.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fsumf1of.2 |
⊢ Ⅎ 𝑛 𝜑 |
3 |
|
fsumf1of.3 |
⊢ ( 𝑘 = 𝐺 → 𝐵 = 𝐷 ) |
4 |
|
fsumf1of.4 |
⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
5 |
|
fsumf1of.5 |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
6 |
|
fsumf1of.6 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) |
7 |
|
fsumf1of.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
8 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐴 |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
11 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐵 |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 |
13 |
8 9 10 11 12
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑖 ∈ 𝐴 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 |
14 |
13
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑖 ∈ 𝐴 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
15 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 |
16 |
|
nfcv |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑛 ⦌ 𝐷 |
17 |
12 16
|
nfeq |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 |
18 |
15 17
|
nfim |
⊢ Ⅎ 𝑘 ( 𝑖 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) |
19 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 ↔ 𝑖 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 ) ) |
20 |
8
|
eqeq1d |
⊢ ( 𝑘 = 𝑖 → ( 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ↔ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) ) |
21 |
19 20
|
imbi12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑘 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 → 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) ↔ ( 𝑖 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) ) ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
23 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑗 / 𝑛 ⦌ 𝐺 |
24 |
22 23
|
nfeq |
⊢ Ⅎ 𝑛 𝑘 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 |
25 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐵 |
26 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑗 / 𝑛 ⦌ 𝐷 |
27 |
25 26
|
nfeq |
⊢ Ⅎ 𝑛 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 |
28 |
24 27
|
nfim |
⊢ Ⅎ 𝑛 ( 𝑘 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 → 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) |
29 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑗 → 𝐺 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 ) |
30 |
29
|
eqeq2d |
⊢ ( 𝑛 = 𝑗 → ( 𝑘 = 𝐺 ↔ 𝑘 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 ) ) |
31 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑗 → 𝐷 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) |
32 |
31
|
eqeq2d |
⊢ ( 𝑛 = 𝑗 → ( 𝐵 = 𝐷 ↔ 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) ) |
33 |
30 32
|
imbi12d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑘 = 𝐺 → 𝐵 = 𝐷 ) ↔ ( 𝑘 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 → 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) ) ) |
34 |
28 33 3
|
chvarfv |
⊢ ( 𝑘 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 → 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) |
35 |
18 21 34
|
chvarfv |
⊢ ( 𝑖 = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) |
36 |
|
nfv |
⊢ Ⅎ 𝑛 𝑗 ∈ 𝐶 |
37 |
2 36
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑗 ) |
39 |
38 23
|
nfeq |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑗 ) = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 |
40 |
37 39
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑗 ) = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 ) |
41 |
|
eleq1w |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 ∈ 𝐶 ↔ 𝑗 ∈ 𝐶 ) ) |
42 |
41
|
anbi2d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) ) ) |
43 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) |
44 |
43 29
|
eqeq12d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) = 𝐺 ↔ ( 𝐹 ‘ 𝑗 ) = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 ) ) |
45 |
42 44
|
imbi12d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑗 ) = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 ) ) ) |
46 |
40 45 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑗 ) = ⦋ 𝑗 / 𝑛 ⦌ 𝐺 ) |
47 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 ∈ 𝐴 |
48 |
1 47
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) |
49 |
12
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ |
50 |
48 49
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
51 |
|
eleq1w |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴 ) ) |
52 |
51
|
anbi2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ) ) |
53 |
8
|
eleq1d |
⊢ ( 𝑘 = 𝑖 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
54 |
52 53
|
imbi12d |
⊢ ( 𝑘 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
55 |
50 54 7
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
56 |
35 4 5 46 55
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝐴 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 = Σ 𝑗 ∈ 𝐶 ⦋ 𝑗 / 𝑛 ⦌ 𝐷 ) |
57 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐶 |
58 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐶 |
59 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐷 |
60 |
31 57 58 59 26
|
cbvsum |
⊢ Σ 𝑛 ∈ 𝐶 𝐷 = Σ 𝑗 ∈ 𝐶 ⦋ 𝑗 / 𝑛 ⦌ 𝐷 |
61 |
60
|
eqcomi |
⊢ Σ 𝑗 ∈ 𝐶 ⦋ 𝑗 / 𝑛 ⦌ 𝐷 = Σ 𝑛 ∈ 𝐶 𝐷 |
62 |
61
|
a1i |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐶 ⦋ 𝑗 / 𝑛 ⦌ 𝐷 = Σ 𝑛 ∈ 𝐶 𝐷 ) |
63 |
14 56 62
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑛 ∈ 𝐶 𝐷 ) |