Metamath Proof Explorer


Theorem fsumf1of

Description: Re-index a finite sum using a bijection. Same as fsumf1o , but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fsumf1of.1 𝑘 𝜑
fsumf1of.2 𝑛 𝜑
fsumf1of.3 ( 𝑘 = 𝐺𝐵 = 𝐷 )
fsumf1of.4 ( 𝜑𝐶 ∈ Fin )
fsumf1of.5 ( 𝜑𝐹 : 𝐶1-1-onto𝐴 )
fsumf1of.6 ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) = 𝐺 )
fsumf1of.7 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsumf1of ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑛𝐶 𝐷 )

Proof

Step Hyp Ref Expression
1 fsumf1of.1 𝑘 𝜑
2 fsumf1of.2 𝑛 𝜑
3 fsumf1of.3 ( 𝑘 = 𝐺𝐵 = 𝐷 )
4 fsumf1of.4 ( 𝜑𝐶 ∈ Fin )
5 fsumf1of.5 ( 𝜑𝐹 : 𝐶1-1-onto𝐴 )
6 fsumf1of.6 ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) = 𝐺 )
7 fsumf1of.7 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
8 csbeq1a ( 𝑘 = 𝑖𝐵 = 𝑖 / 𝑘 𝐵 )
9 nfcv 𝑖 𝐴
10 nfcv 𝑘 𝐴
11 nfcv 𝑖 𝐵
12 nfcsb1v 𝑘 𝑖 / 𝑘 𝐵
13 8 9 10 11 12 cbvsum Σ 𝑘𝐴 𝐵 = Σ 𝑖𝐴 𝑖 / 𝑘 𝐵
14 13 a1i ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑖𝐴 𝑖 / 𝑘 𝐵 )
15 nfv 𝑘 𝑖 = 𝑗 / 𝑛 𝐺
16 nfcv 𝑘 𝑗 / 𝑛 𝐷
17 12 16 nfeq 𝑘 𝑖 / 𝑘 𝐵 = 𝑗 / 𝑛 𝐷
18 15 17 nfim 𝑘 ( 𝑖 = 𝑗 / 𝑛 𝐺 𝑖 / 𝑘 𝐵 = 𝑗 / 𝑛 𝐷 )
19 eqeq1 ( 𝑘 = 𝑖 → ( 𝑘 = 𝑗 / 𝑛 𝐺𝑖 = 𝑗 / 𝑛 𝐺 ) )
20 8 eqeq1d ( 𝑘 = 𝑖 → ( 𝐵 = 𝑗 / 𝑛 𝐷 𝑖 / 𝑘 𝐵 = 𝑗 / 𝑛 𝐷 ) )
21 19 20 imbi12d ( 𝑘 = 𝑖 → ( ( 𝑘 = 𝑗 / 𝑛 𝐺𝐵 = 𝑗 / 𝑛 𝐷 ) ↔ ( 𝑖 = 𝑗 / 𝑛 𝐺 𝑖 / 𝑘 𝐵 = 𝑗 / 𝑛 𝐷 ) ) )
22 nfcv 𝑛 𝑘
23 nfcsb1v 𝑛 𝑗 / 𝑛 𝐺
24 22 23 nfeq 𝑛 𝑘 = 𝑗 / 𝑛 𝐺
25 nfcv 𝑛 𝐵
26 nfcsb1v 𝑛 𝑗 / 𝑛 𝐷
27 25 26 nfeq 𝑛 𝐵 = 𝑗 / 𝑛 𝐷
28 24 27 nfim 𝑛 ( 𝑘 = 𝑗 / 𝑛 𝐺𝐵 = 𝑗 / 𝑛 𝐷 )
29 csbeq1a ( 𝑛 = 𝑗𝐺 = 𝑗 / 𝑛 𝐺 )
30 29 eqeq2d ( 𝑛 = 𝑗 → ( 𝑘 = 𝐺𝑘 = 𝑗 / 𝑛 𝐺 ) )
31 csbeq1a ( 𝑛 = 𝑗𝐷 = 𝑗 / 𝑛 𝐷 )
32 31 eqeq2d ( 𝑛 = 𝑗 → ( 𝐵 = 𝐷𝐵 = 𝑗 / 𝑛 𝐷 ) )
33 30 32 imbi12d ( 𝑛 = 𝑗 → ( ( 𝑘 = 𝐺𝐵 = 𝐷 ) ↔ ( 𝑘 = 𝑗 / 𝑛 𝐺𝐵 = 𝑗 / 𝑛 𝐷 ) ) )
34 28 33 3 chvarfv ( 𝑘 = 𝑗 / 𝑛 𝐺𝐵 = 𝑗 / 𝑛 𝐷 )
35 18 21 34 chvarfv ( 𝑖 = 𝑗 / 𝑛 𝐺 𝑖 / 𝑘 𝐵 = 𝑗 / 𝑛 𝐷 )
36 nfv 𝑛 𝑗𝐶
37 2 36 nfan 𝑛 ( 𝜑𝑗𝐶 )
38 nfcv 𝑛 ( 𝐹𝑗 )
39 38 23 nfeq 𝑛 ( 𝐹𝑗 ) = 𝑗 / 𝑛 𝐺
40 37 39 nfim 𝑛 ( ( 𝜑𝑗𝐶 ) → ( 𝐹𝑗 ) = 𝑗 / 𝑛 𝐺 )
41 eleq1w ( 𝑛 = 𝑗 → ( 𝑛𝐶𝑗𝐶 ) )
42 41 anbi2d ( 𝑛 = 𝑗 → ( ( 𝜑𝑛𝐶 ) ↔ ( 𝜑𝑗𝐶 ) ) )
43 fveq2 ( 𝑛 = 𝑗 → ( 𝐹𝑛 ) = ( 𝐹𝑗 ) )
44 43 29 eqeq12d ( 𝑛 = 𝑗 → ( ( 𝐹𝑛 ) = 𝐺 ↔ ( 𝐹𝑗 ) = 𝑗 / 𝑛 𝐺 ) )
45 42 44 imbi12d ( 𝑛 = 𝑗 → ( ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) = 𝐺 ) ↔ ( ( 𝜑𝑗𝐶 ) → ( 𝐹𝑗 ) = 𝑗 / 𝑛 𝐺 ) ) )
46 40 45 6 chvarfv ( ( 𝜑𝑗𝐶 ) → ( 𝐹𝑗 ) = 𝑗 / 𝑛 𝐺 )
47 nfv 𝑘 𝑖𝐴
48 1 47 nfan 𝑘 ( 𝜑𝑖𝐴 )
49 12 nfel1 𝑘 𝑖 / 𝑘 𝐵 ∈ ℂ
50 48 49 nfim 𝑘 ( ( 𝜑𝑖𝐴 ) → 𝑖 / 𝑘 𝐵 ∈ ℂ )
51 eleq1w ( 𝑘 = 𝑖 → ( 𝑘𝐴𝑖𝐴 ) )
52 51 anbi2d ( 𝑘 = 𝑖 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑖𝐴 ) ) )
53 8 eleq1d ( 𝑘 = 𝑖 → ( 𝐵 ∈ ℂ ↔ 𝑖 / 𝑘 𝐵 ∈ ℂ ) )
54 52 53 imbi12d ( 𝑘 = 𝑖 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑖𝐴 ) → 𝑖 / 𝑘 𝐵 ∈ ℂ ) ) )
55 50 54 7 chvarfv ( ( 𝜑𝑖𝐴 ) → 𝑖 / 𝑘 𝐵 ∈ ℂ )
56 35 4 5 46 55 fsumf1o ( 𝜑 → Σ 𝑖𝐴 𝑖 / 𝑘 𝐵 = Σ 𝑗𝐶 𝑗 / 𝑛 𝐷 )
57 nfcv 𝑗 𝐶
58 nfcv 𝑛 𝐶
59 nfcv 𝑗 𝐷
60 31 57 58 59 26 cbvsum Σ 𝑛𝐶 𝐷 = Σ 𝑗𝐶 𝑗 / 𝑛 𝐷
61 60 eqcomi Σ 𝑗𝐶 𝑗 / 𝑛 𝐷 = Σ 𝑛𝐶 𝐷
62 61 a1i ( 𝜑 → Σ 𝑗𝐶 𝑗 / 𝑛 𝐷 = Σ 𝑛𝐶 𝐷 )
63 14 56 62 3eqtrd ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑛𝐶 𝐷 )