| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumf1of.1 | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fsumf1of.2 | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 3 |  | fsumf1of.3 | ⊢ ( 𝑘  =  𝐺  →  𝐵  =  𝐷 ) | 
						
							| 4 |  | fsumf1of.4 | ⊢ ( 𝜑  →  𝐶  ∈  Fin ) | 
						
							| 5 |  | fsumf1of.5 | ⊢ ( 𝜑  →  𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | 
						
							| 6 |  | fsumf1of.6 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑛 )  =  𝐺 ) | 
						
							| 7 |  | fsumf1of.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 8 |  | csbeq1a | ⊢ ( 𝑘  =  𝑖  →  𝐵  =  ⦋ 𝑖  /  𝑘 ⦌ 𝐵 ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑖 𝐵 | 
						
							| 10 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑖  /  𝑘 ⦌ 𝐵 | 
						
							| 11 | 8 9 10 | cbvsum | ⊢ Σ 𝑘  ∈  𝐴 𝐵  =  Σ 𝑖  ∈  𝐴 ⦋ 𝑖  /  𝑘 ⦌ 𝐵 | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  =  Σ 𝑖  ∈  𝐴 ⦋ 𝑖  /  𝑘 ⦌ 𝐵 ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑘 𝑖  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺 | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑛 ⦌ 𝐷 | 
						
							| 15 | 10 14 | nfeq | ⊢ Ⅎ 𝑘 ⦋ 𝑖  /  𝑘 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 | 
						
							| 16 | 13 15 | nfim | ⊢ Ⅎ 𝑘 ( 𝑖  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 ) | 
						
							| 17 |  | eqeq1 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺  ↔  𝑖  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺 ) ) | 
						
							| 18 | 8 | eqeq1d | ⊢ ( 𝑘  =  𝑖  →  ( 𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷  ↔  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 ) ) | 
						
							| 19 | 17 18 | imbi12d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑘  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺  →  𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 )  ↔  ( 𝑖  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 ) ) ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑛 𝑘 | 
						
							| 21 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑗  /  𝑛 ⦌ 𝐺 | 
						
							| 22 | 20 21 | nfeq | ⊢ Ⅎ 𝑛 𝑘  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺 | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑛 𝐵 | 
						
							| 24 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑗  /  𝑛 ⦌ 𝐷 | 
						
							| 25 | 23 24 | nfeq | ⊢ Ⅎ 𝑛 𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 | 
						
							| 26 | 22 25 | nfim | ⊢ Ⅎ 𝑛 ( 𝑘  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺  →  𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 ) | 
						
							| 27 |  | csbeq1a | ⊢ ( 𝑛  =  𝑗  →  𝐺  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺 ) | 
						
							| 28 | 27 | eqeq2d | ⊢ ( 𝑛  =  𝑗  →  ( 𝑘  =  𝐺  ↔  𝑘  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺 ) ) | 
						
							| 29 |  | csbeq1a | ⊢ ( 𝑛  =  𝑗  →  𝐷  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 ) | 
						
							| 30 | 29 | eqeq2d | ⊢ ( 𝑛  =  𝑗  →  ( 𝐵  =  𝐷  ↔  𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 ) ) | 
						
							| 31 | 28 30 | imbi12d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝑘  =  𝐺  →  𝐵  =  𝐷 )  ↔  ( 𝑘  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺  →  𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 ) ) ) | 
						
							| 32 | 26 31 3 | chvarfv | ⊢ ( 𝑘  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺  →  𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 ) | 
						
							| 33 | 16 19 32 | chvarfv | ⊢ ( 𝑖  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐷 ) | 
						
							| 34 |  | nfv | ⊢ Ⅎ 𝑛 𝑗  ∈  𝐶 | 
						
							| 35 | 2 34 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑗  ∈  𝐶 ) | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑗 ) | 
						
							| 37 | 36 21 | nfeq | ⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺 | 
						
							| 38 | 35 37 | nfim | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑗  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺 ) | 
						
							| 39 |  | eleq1w | ⊢ ( 𝑛  =  𝑗  →  ( 𝑛  ∈  𝐶  ↔  𝑗  ∈  𝐶 ) ) | 
						
							| 40 | 39 | anbi2d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝜑  ∧  𝑛  ∈  𝐶 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝐶 ) ) ) | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 42 | 41 27 | eqeq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝐹 ‘ 𝑛 )  =  𝐺  ↔  ( 𝐹 ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺 ) ) | 
						
							| 43 | 40 42 | imbi12d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑛 )  =  𝐺 )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺 ) ) ) | 
						
							| 44 | 38 43 6 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐺 ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑘 𝑖  ∈  𝐴 | 
						
							| 46 | 1 45 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑖  ∈  𝐴 ) | 
						
							| 47 | 10 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  ℂ | 
						
							| 48 | 46 47 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑖  ∈  𝐴 )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 49 |  | eleq1w | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  ∈  𝐴  ↔  𝑖  ∈  𝐴 ) ) | 
						
							| 50 | 49 | anbi2d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑖  ∈  𝐴 ) ) ) | 
						
							| 51 | 8 | eleq1d | ⊢ ( 𝑘  =  𝑖  →  ( 𝐵  ∈  ℂ  ↔  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 52 | 50 51 | imbi12d | ⊢ ( 𝑘  =  𝑖  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑖  ∈  𝐴 )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) ) | 
						
							| 53 | 48 52 7 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐴 )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 54 | 33 4 5 44 53 | fsumf1o | ⊢ ( 𝜑  →  Σ 𝑖  ∈  𝐴 ⦋ 𝑖  /  𝑘 ⦌ 𝐵  =  Σ 𝑗  ∈  𝐶 ⦋ 𝑗  /  𝑛 ⦌ 𝐷 ) | 
						
							| 55 |  | nfcv | ⊢ Ⅎ 𝑗 𝐷 | 
						
							| 56 | 29 55 24 | cbvsum | ⊢ Σ 𝑛  ∈  𝐶 𝐷  =  Σ 𝑗  ∈  𝐶 ⦋ 𝑗  /  𝑛 ⦌ 𝐷 | 
						
							| 57 | 56 | eqcomi | ⊢ Σ 𝑗  ∈  𝐶 ⦋ 𝑗  /  𝑛 ⦌ 𝐷  =  Σ 𝑛  ∈  𝐶 𝐷 | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  Σ 𝑗  ∈  𝐶 ⦋ 𝑗  /  𝑛 ⦌ 𝐷  =  Σ 𝑛  ∈  𝐶 𝐷 ) | 
						
							| 59 | 12 54 58 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  =  Σ 𝑛  ∈  𝐶 𝐷 ) |