Metamath Proof Explorer


Theorem fsumf1of

Description: Re-index a finite sum using a bijection. Same as fsumf1o , but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fsumf1of.1 𝑘 𝜑
fsumf1of.2 𝑛 𝜑
fsumf1of.3 ( 𝑘 = 𝐺𝐵 = 𝐷 )
fsumf1of.4 ( 𝜑𝐶 ∈ Fin )
fsumf1of.5 ( 𝜑𝐹 : 𝐶1-1-onto𝐴 )
fsumf1of.6 ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) = 𝐺 )
fsumf1of.7 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsumf1of ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑛𝐶 𝐷 )

Proof

Step Hyp Ref Expression
1 fsumf1of.1 𝑘 𝜑
2 fsumf1of.2 𝑛 𝜑
3 fsumf1of.3 ( 𝑘 = 𝐺𝐵 = 𝐷 )
4 fsumf1of.4 ( 𝜑𝐶 ∈ Fin )
5 fsumf1of.5 ( 𝜑𝐹 : 𝐶1-1-onto𝐴 )
6 fsumf1of.6 ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) = 𝐺 )
7 fsumf1of.7 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
8 csbeq1a ( 𝑘 = 𝑖𝐵 = 𝑖 / 𝑘 𝐵 )
9 nfcv 𝑖 𝐵
10 nfcsb1v 𝑘 𝑖 / 𝑘 𝐵
11 8 9 10 cbvsum Σ 𝑘𝐴 𝐵 = Σ 𝑖𝐴 𝑖 / 𝑘 𝐵
12 11 a1i ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑖𝐴 𝑖 / 𝑘 𝐵 )
13 nfv 𝑘 𝑖 = 𝑗 / 𝑛 𝐺
14 nfcv 𝑘 𝑗 / 𝑛 𝐷
15 10 14 nfeq 𝑘 𝑖 / 𝑘 𝐵 = 𝑗 / 𝑛 𝐷
16 13 15 nfim 𝑘 ( 𝑖 = 𝑗 / 𝑛 𝐺 𝑖 / 𝑘 𝐵 = 𝑗 / 𝑛 𝐷 )
17 eqeq1 ( 𝑘 = 𝑖 → ( 𝑘 = 𝑗 / 𝑛 𝐺𝑖 = 𝑗 / 𝑛 𝐺 ) )
18 8 eqeq1d ( 𝑘 = 𝑖 → ( 𝐵 = 𝑗 / 𝑛 𝐷 𝑖 / 𝑘 𝐵 = 𝑗 / 𝑛 𝐷 ) )
19 17 18 imbi12d ( 𝑘 = 𝑖 → ( ( 𝑘 = 𝑗 / 𝑛 𝐺𝐵 = 𝑗 / 𝑛 𝐷 ) ↔ ( 𝑖 = 𝑗 / 𝑛 𝐺 𝑖 / 𝑘 𝐵 = 𝑗 / 𝑛 𝐷 ) ) )
20 nfcv 𝑛 𝑘
21 nfcsb1v 𝑛 𝑗 / 𝑛 𝐺
22 20 21 nfeq 𝑛 𝑘 = 𝑗 / 𝑛 𝐺
23 nfcv 𝑛 𝐵
24 nfcsb1v 𝑛 𝑗 / 𝑛 𝐷
25 23 24 nfeq 𝑛 𝐵 = 𝑗 / 𝑛 𝐷
26 22 25 nfim 𝑛 ( 𝑘 = 𝑗 / 𝑛 𝐺𝐵 = 𝑗 / 𝑛 𝐷 )
27 csbeq1a ( 𝑛 = 𝑗𝐺 = 𝑗 / 𝑛 𝐺 )
28 27 eqeq2d ( 𝑛 = 𝑗 → ( 𝑘 = 𝐺𝑘 = 𝑗 / 𝑛 𝐺 ) )
29 csbeq1a ( 𝑛 = 𝑗𝐷 = 𝑗 / 𝑛 𝐷 )
30 29 eqeq2d ( 𝑛 = 𝑗 → ( 𝐵 = 𝐷𝐵 = 𝑗 / 𝑛 𝐷 ) )
31 28 30 imbi12d ( 𝑛 = 𝑗 → ( ( 𝑘 = 𝐺𝐵 = 𝐷 ) ↔ ( 𝑘 = 𝑗 / 𝑛 𝐺𝐵 = 𝑗 / 𝑛 𝐷 ) ) )
32 26 31 3 chvarfv ( 𝑘 = 𝑗 / 𝑛 𝐺𝐵 = 𝑗 / 𝑛 𝐷 )
33 16 19 32 chvarfv ( 𝑖 = 𝑗 / 𝑛 𝐺 𝑖 / 𝑘 𝐵 = 𝑗 / 𝑛 𝐷 )
34 nfv 𝑛 𝑗𝐶
35 2 34 nfan 𝑛 ( 𝜑𝑗𝐶 )
36 nfcv 𝑛 ( 𝐹𝑗 )
37 36 21 nfeq 𝑛 ( 𝐹𝑗 ) = 𝑗 / 𝑛 𝐺
38 35 37 nfim 𝑛 ( ( 𝜑𝑗𝐶 ) → ( 𝐹𝑗 ) = 𝑗 / 𝑛 𝐺 )
39 eleq1w ( 𝑛 = 𝑗 → ( 𝑛𝐶𝑗𝐶 ) )
40 39 anbi2d ( 𝑛 = 𝑗 → ( ( 𝜑𝑛𝐶 ) ↔ ( 𝜑𝑗𝐶 ) ) )
41 fveq2 ( 𝑛 = 𝑗 → ( 𝐹𝑛 ) = ( 𝐹𝑗 ) )
42 41 27 eqeq12d ( 𝑛 = 𝑗 → ( ( 𝐹𝑛 ) = 𝐺 ↔ ( 𝐹𝑗 ) = 𝑗 / 𝑛 𝐺 ) )
43 40 42 imbi12d ( 𝑛 = 𝑗 → ( ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) = 𝐺 ) ↔ ( ( 𝜑𝑗𝐶 ) → ( 𝐹𝑗 ) = 𝑗 / 𝑛 𝐺 ) ) )
44 38 43 6 chvarfv ( ( 𝜑𝑗𝐶 ) → ( 𝐹𝑗 ) = 𝑗 / 𝑛 𝐺 )
45 nfv 𝑘 𝑖𝐴
46 1 45 nfan 𝑘 ( 𝜑𝑖𝐴 )
47 10 nfel1 𝑘 𝑖 / 𝑘 𝐵 ∈ ℂ
48 46 47 nfim 𝑘 ( ( 𝜑𝑖𝐴 ) → 𝑖 / 𝑘 𝐵 ∈ ℂ )
49 eleq1w ( 𝑘 = 𝑖 → ( 𝑘𝐴𝑖𝐴 ) )
50 49 anbi2d ( 𝑘 = 𝑖 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑖𝐴 ) ) )
51 8 eleq1d ( 𝑘 = 𝑖 → ( 𝐵 ∈ ℂ ↔ 𝑖 / 𝑘 𝐵 ∈ ℂ ) )
52 50 51 imbi12d ( 𝑘 = 𝑖 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑖𝐴 ) → 𝑖 / 𝑘 𝐵 ∈ ℂ ) ) )
53 48 52 7 chvarfv ( ( 𝜑𝑖𝐴 ) → 𝑖 / 𝑘 𝐵 ∈ ℂ )
54 33 4 5 44 53 fsumf1o ( 𝜑 → Σ 𝑖𝐴 𝑖 / 𝑘 𝐵 = Σ 𝑗𝐶 𝑗 / 𝑛 𝐷 )
55 nfcv 𝑗 𝐷
56 29 55 24 cbvsum Σ 𝑛𝐶 𝐷 = Σ 𝑗𝐶 𝑗 / 𝑛 𝐷
57 56 eqcomi Σ 𝑗𝐶 𝑗 / 𝑛 𝐷 = Σ 𝑛𝐶 𝐷
58 57 a1i ( 𝜑 → Σ 𝑗𝐶 𝑗 / 𝑛 𝐷 = Σ 𝑛𝐶 𝐷 )
59 12 54 58 3eqtrd ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑛𝐶 𝐷 )