Step |
Hyp |
Ref |
Expression |
1 |
|
fsumfldivdiag.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fsumfldivdiag.2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝐵 ∈ ℂ ) |
3 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
4 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ∈ Fin ) |
5 |
1
|
fsumfldivdiaglem |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) ) ) |
6 |
1
|
fsumfldivdiaglem |
⊢ ( 𝜑 → ( ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) ) |
7 |
5 6
|
impbid |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ↔ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) ) ) |
8 |
3 3 4 7 2
|
fsumcom2 |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) 𝐵 = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) 𝐵 ) |