| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumfldivdiag.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) |
| 3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝐴 ∈ ℝ ) |
| 4 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 5 |
|
fznnfl |
⊢ ( 𝐴 ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴 ) ) ) |
| 6 |
3 5
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴 ) ) ) |
| 7 |
4 6
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴 ) ) |
| 8 |
7
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑛 ∈ ℕ ) |
| 9 |
3 8
|
nndivred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝐴 / 𝑛 ) ∈ ℝ ) |
| 10 |
|
fznnfl |
⊢ ( ( 𝐴 / 𝑛 ) ∈ ℝ → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( 𝐴 / 𝑛 ) ) ) ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( 𝐴 / 𝑛 ) ) ) ) |
| 12 |
2 11
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 13 |
12
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ∈ ℕ ) |
| 14 |
13
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ∈ ℝ ) |
| 15 |
12
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ≤ ( 𝐴 / 𝑛 ) ) |
| 16 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝐴 ∈ ℂ ) |
| 17 |
16
|
mullidd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 18 |
8
|
nnge1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 1 ≤ 𝑛 ) |
| 19 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 1 ∈ ℝ ) |
| 20 |
8
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑛 ∈ ℝ ) |
| 21 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 0 ∈ ℝ ) |
| 22 |
8 13
|
nnmulcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 · 𝑚 ) ∈ ℕ ) |
| 23 |
22
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 · 𝑚 ) ∈ ℝ ) |
| 24 |
22
|
nngt0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 0 < ( 𝑛 · 𝑚 ) ) |
| 25 |
8
|
nngt0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 0 < 𝑛 ) |
| 26 |
|
lemuldiv2 |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 𝑛 · 𝑚 ) ≤ 𝐴 ↔ 𝑚 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 27 |
14 3 20 25 26
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( ( 𝑛 · 𝑚 ) ≤ 𝐴 ↔ 𝑚 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 28 |
15 27
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 · 𝑚 ) ≤ 𝐴 ) |
| 29 |
21 23 3 24 28
|
ltletrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 0 < 𝐴 ) |
| 30 |
|
lemul1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ 𝑛 ↔ ( 1 · 𝐴 ) ≤ ( 𝑛 · 𝐴 ) ) ) |
| 31 |
19 20 3 29 30
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 1 ≤ 𝑛 ↔ ( 1 · 𝐴 ) ≤ ( 𝑛 · 𝐴 ) ) ) |
| 32 |
18 31
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 1 · 𝐴 ) ≤ ( 𝑛 · 𝐴 ) ) |
| 33 |
17 32
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝐴 ≤ ( 𝑛 · 𝐴 ) ) |
| 34 |
|
ledivmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 𝐴 / 𝑛 ) ≤ 𝐴 ↔ 𝐴 ≤ ( 𝑛 · 𝐴 ) ) ) |
| 35 |
3 3 20 25 34
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( ( 𝐴 / 𝑛 ) ≤ 𝐴 ↔ 𝐴 ≤ ( 𝑛 · 𝐴 ) ) ) |
| 36 |
33 35
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝐴 / 𝑛 ) ≤ 𝐴 ) |
| 37 |
14 9 3 15 36
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ≤ 𝐴 ) |
| 38 |
|
fznnfl |
⊢ ( 𝐴 ∈ ℝ → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ 𝐴 ) ) ) |
| 39 |
3 38
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ 𝐴 ) ) ) |
| 40 |
13 37 39
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 41 |
13
|
nngt0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 0 < 𝑚 ) |
| 42 |
|
lemuldiv |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑚 ∈ ℝ ∧ 0 < 𝑚 ) ) → ( ( 𝑛 · 𝑚 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑚 ) ) ) |
| 43 |
20 3 14 41 42
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( ( 𝑛 · 𝑚 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑚 ) ) ) |
| 44 |
28 43
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑛 ≤ ( 𝐴 / 𝑚 ) ) |
| 45 |
3 13
|
nndivred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝐴 / 𝑚 ) ∈ ℝ ) |
| 46 |
|
fznnfl |
⊢ ( ( 𝐴 / 𝑚 ) ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑚 ) ) ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑚 ) ) ) ) |
| 48 |
8 44 47
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) |
| 49 |
40 48
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) ) |
| 50 |
49
|
ex |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) ) ) |