| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumge0.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
fsumge0.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 3 |
|
fsumge0.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 4 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 5 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 6 |
4 5
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ ℂ ) |
| 8 |
|
ge0addcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 10 |
|
elrege0 |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 11 |
2 3 10
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 12 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,) +∞ ) ) |
| 14 |
7 9 1 11 13
|
fsumcllem |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 15 |
|
elrege0 |
⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 16 |
15
|
simprbi |
⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) → 0 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 17 |
14 16
|
syl |
⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |