Step |
Hyp |
Ref |
Expression |
1 |
|
fsumge0cl.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumge0cl.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
3 |
|
0xr |
⊢ 0 ∈ ℝ* |
4 |
3
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
5 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
6 |
5
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
7 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
8 |
7 2
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
9 |
1 8
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
10 |
9
|
rexrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* ) |
11 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℝ* ) |
12 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → +∞ ∈ ℝ* ) |
13 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝐵 ) |
14 |
11 12 2 13
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
15 |
1 8 14
|
fsumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
16 |
9
|
ltpnfd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 < +∞ ) |
17 |
4 6 10 15 16
|
elicod |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) ) |