Metamath Proof Explorer


Theorem fsumge0cl

Description: The finite sum of nonnegative reals is a nonnegative real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fsumge0cl.a ( 𝜑𝐴 ∈ Fin )
fsumge0cl.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
Assertion fsumge0cl ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ( 0 [,) +∞ ) )

Proof

Step Hyp Ref Expression
1 fsumge0cl.a ( 𝜑𝐴 ∈ Fin )
2 fsumge0cl.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
3 0xr 0 ∈ ℝ*
4 3 a1i ( 𝜑 → 0 ∈ ℝ* )
5 pnfxr +∞ ∈ ℝ*
6 5 a1i ( 𝜑 → +∞ ∈ ℝ* )
7 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
8 7 2 sselid ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
9 1 8 fsumrecl ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℝ )
10 9 rexrd ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℝ* )
11 3 a1i ( ( 𝜑𝑘𝐴 ) → 0 ∈ ℝ* )
12 5 a1i ( ( 𝜑𝑘𝐴 ) → +∞ ∈ ℝ* )
13 icogelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝐵 )
14 11 12 2 13 syl3anc ( ( 𝜑𝑘𝐴 ) → 0 ≤ 𝐵 )
15 1 8 14 fsumge0 ( 𝜑 → 0 ≤ Σ 𝑘𝐴 𝐵 )
16 9 ltpnfd ( 𝜑 → Σ 𝑘𝐴 𝐵 < +∞ )
17 4 6 10 15 16 elicod ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ( 0 [,) +∞ ) )