| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumge0.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | fsumge0.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fsumge0.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 4 |  | fsumge1.4 | ⊢ ( 𝑘  =  𝑀  →  𝐵  =  𝐶 ) | 
						
							| 5 |  | fsumge1.5 | ⊢ ( 𝜑  →  𝑀  ∈  𝐴 ) | 
						
							| 6 | 4 | eleq1d | ⊢ ( 𝑘  =  𝑀  →  ( 𝐵  ∈  ℂ  ↔  𝐶  ∈  ℂ ) ) | 
						
							| 7 | 2 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 8 | 7 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝐵  ∈  ℂ ) | 
						
							| 9 | 6 8 5 | rspcdva | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 10 | 4 | sumsn | ⊢ ( ( 𝑀  ∈  𝐴  ∧  𝐶  ∈  ℂ )  →  Σ 𝑘  ∈  { 𝑀 } 𝐵  =  𝐶 ) | 
						
							| 11 | 5 9 10 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑀 } 𝐵  =  𝐶 ) | 
						
							| 12 | 5 | snssd | ⊢ ( 𝜑  →  { 𝑀 }  ⊆  𝐴 ) | 
						
							| 13 | 1 2 3 12 | fsumless | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑀 } 𝐵  ≤  Σ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 14 | 11 13 | eqbrtrrd | ⊢ ( 𝜑  →  𝐶  ≤  Σ 𝑘  ∈  𝐴 𝐵 ) |