Step |
Hyp |
Ref |
Expression |
1 |
|
fsumge0.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumge0.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
fsumge0.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
4 |
|
fsumge1.4 |
⊢ ( 𝑘 = 𝑀 → 𝐵 = 𝐶 ) |
5 |
|
fsumge1.5 |
⊢ ( 𝜑 → 𝑀 ∈ 𝐴 ) |
6 |
4
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
7 |
2
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
8 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
9 |
6 8 5
|
rspcdva |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
10 |
4
|
sumsn |
⊢ ( ( 𝑀 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑀 } 𝐵 = 𝐶 ) |
11 |
5 9 10
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } 𝐵 = 𝐶 ) |
12 |
5
|
snssd |
⊢ ( 𝜑 → { 𝑀 } ⊆ 𝐴 ) |
13 |
1 2 3 12
|
fsumless |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
14 |
11 13
|
eqbrtrrd |
⊢ ( 𝜑 → 𝐶 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |