Step |
Hyp |
Ref |
Expression |
1 |
|
fsumharmonic.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
fsumharmonic.t |
⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 1 ≤ 𝑇 ) ) |
3 |
|
fsumharmonic.r |
⊢ ( 𝜑 → ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) |
4 |
|
fsumharmonic.b |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐵 ∈ ℂ ) |
5 |
|
fsumharmonic.c |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐶 ∈ ℝ ) |
6 |
|
fsumharmonic.0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 0 ≤ 𝐶 ) |
7 |
|
fsumharmonic.1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) |
8 |
|
fsumharmonic.2 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝐴 / 𝑛 ) < 𝑇 ) → ( abs ‘ 𝐵 ) ≤ 𝑅 ) |
9 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
10 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
12 |
11
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℂ ) |
13 |
11
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ≠ 0 ) |
14 |
4 12 13
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐵 / 𝑛 ) ∈ ℂ ) |
15 |
9 14
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ∈ ℂ ) |
16 |
15
|
abscld |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ∈ ℝ ) |
17 |
4
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
18 |
17 11
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
19 |
9 18
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
20 |
9 5
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 ∈ ℝ ) |
21 |
3
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
22 |
2
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
23 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
24 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
25 |
|
0lt1 |
⊢ 0 < 1 |
26 |
25
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
27 |
2
|
simprd |
⊢ ( 𝜑 → 1 ≤ 𝑇 ) |
28 |
23 24 22 26 27
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑇 ) |
29 |
22 28
|
elrpd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
30 |
29
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑇 ) ∈ ℝ ) |
31 |
30 24
|
readdcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
32 |
21 31
|
remulcld |
⊢ ( 𝜑 → ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ∈ ℝ ) |
33 |
20 32
|
readdcld |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ∈ ℝ ) |
34 |
9 14
|
fsumabs |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( abs ‘ ( 𝐵 / 𝑛 ) ) ) |
35 |
4 12 13
|
absdivd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ ( 𝐵 / 𝑛 ) ) = ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝑛 ) ) ) |
36 |
11
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ+ ) |
37 |
36
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) ) |
38 |
|
absid |
⊢ ( ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
41 |
35 40
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ ( 𝐵 / 𝑛 ) ) = ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
42 |
41
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( abs ‘ ( 𝐵 / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
43 |
34 42
|
breqtrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
44 |
1 29
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ∈ ℝ+ ) |
45 |
44
|
rprege0d |
⊢ ( 𝜑 → ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝑇 ) ) ) |
46 |
|
flge0nn0 |
⊢ ( ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝑇 ) ) → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℕ0 ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℕ0 ) |
48 |
47
|
nn0red |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℝ ) |
49 |
48
|
ltp1d |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) < ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ) |
50 |
|
fzdisj |
⊢ ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) < ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) → ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) = ∅ ) |
51 |
49 50
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) = ∅ ) |
52 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ℕ ) |
53 |
47 52
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ℕ ) |
54 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
55 |
53 54
|
eleqtrdi |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
56 |
44
|
rpred |
⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ∈ ℝ ) |
57 |
1
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
58 |
22 28
|
jca |
⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) |
59 |
1
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
60 |
|
lediv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ 𝑇 ↔ ( 𝐴 / 𝑇 ) ≤ ( 𝐴 / 1 ) ) ) |
61 |
24 26 58 59 60
|
syl211anc |
⊢ ( 𝜑 → ( 1 ≤ 𝑇 ↔ ( 𝐴 / 𝑇 ) ≤ ( 𝐴 / 1 ) ) ) |
62 |
27 61
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ≤ ( 𝐴 / 1 ) ) |
63 |
57
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
64 |
63
|
div1d |
⊢ ( 𝜑 → ( 𝐴 / 1 ) = 𝐴 ) |
65 |
62 64
|
breqtrd |
⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ≤ 𝐴 ) |
66 |
|
flword2 |
⊢ ( ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐴 / 𝑇 ) ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
67 |
56 57 65 66
|
syl3anc |
⊢ ( 𝜑 → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
68 |
|
fzsplit2 |
⊢ ( ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
69 |
55 67 68
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
70 |
18
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℂ ) |
71 |
51 69 9 70
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) ) |
72 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∈ Fin ) |
73 |
|
ssun1 |
⊢ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) |
74 |
73 69
|
sseqtrrid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
75 |
74
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
76 |
75 18
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
77 |
72 76
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
78 |
|
fzfid |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
79 |
|
ssun2 |
⊢ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) |
80 |
79 69
|
sseqtrrid |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
81 |
80
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
82 |
81 18
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
83 |
78 82
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
84 |
75 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝐶 ∈ ℝ ) |
85 |
72 84
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) 𝐶 ∈ ℝ ) |
86 |
|
fznnfl |
⊢ ( ( 𝐴 / 𝑇 ) ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) ) |
87 |
56 86
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) ) |
88 |
87
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ≤ ( 𝐴 / 𝑇 ) ) |
89 |
36
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ ) |
90 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
91 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) |
92 |
|
lemuldiv2 |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) → ( ( 𝑇 · 𝑛 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
93 |
89 90 91 92
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑇 · 𝑛 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
94 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑇 ∈ ℝ ) |
95 |
94 90 36
|
lemuldivd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑇 · 𝑛 ) ≤ 𝐴 ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
96 |
93 95
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ≤ ( 𝐴 / 𝑇 ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
97 |
75 96
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 𝑛 ≤ ( 𝐴 / 𝑇 ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
98 |
88 97
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑇 ≤ ( 𝐴 / 𝑛 ) ) |
99 |
7
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑇 ≤ ( 𝐴 / 𝑛 ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) ) |
100 |
75 99
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 𝑇 ≤ ( 𝐴 / 𝑛 ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) ) |
101 |
98 100
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) |
102 |
75 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝐵 ∈ ℂ ) |
103 |
102
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
104 |
75 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ℕ ) |
105 |
104
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
106 |
103 84 105
|
ledivmul2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ 𝐶 ↔ ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) ) |
107 |
101 106
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ 𝐶 ) |
108 |
72 76 84 107
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) 𝐶 ) |
109 |
9 5 6 74
|
fsumless |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) 𝐶 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 ) |
110 |
77 85 20 108 109
|
letrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 ) |
111 |
81 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
112 |
111
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
113 |
78 112
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
114 |
21 113
|
remulcld |
⊢ ( 𝜑 → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ∈ ℝ ) |
115 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑅 ∈ ℝ ) |
116 |
115
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑅 ∈ ℂ ) |
117 |
111
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℂ ) |
118 |
111
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ≠ 0 ) |
119 |
116 117 118
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑅 / 𝑛 ) = ( 𝑅 · ( 1 / 𝑛 ) ) ) |
120 |
115 111
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑅 / 𝑛 ) ∈ ℝ ) |
121 |
119 120
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑅 · ( 1 / 𝑛 ) ) ∈ ℝ ) |
122 |
81 17
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
123 |
81 36
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ+ ) |
124 |
|
noel |
⊢ ¬ 𝑛 ∈ ∅ |
125 |
|
elin |
⊢ ( 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
126 |
51
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ 𝑛 ∈ ∅ ) ) |
127 |
125 126
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ 𝑛 ∈ ∅ ) ) |
128 |
124 127
|
mtbiri |
⊢ ( 𝜑 → ¬ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
129 |
|
imnan |
⊢ ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) → ¬ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ ¬ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
130 |
128 129
|
sylibr |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) → ¬ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
131 |
130
|
con2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) → ¬ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
132 |
131
|
imp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ¬ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
133 |
86
|
baibd |
⊢ ( ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
134 |
56 10 133
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
135 |
134 96
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
136 |
81 135
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
137 |
132 136
|
mtbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ¬ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) |
138 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
139 |
138 111
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 / 𝑛 ) ∈ ℝ ) |
140 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑇 ∈ ℝ ) |
141 |
139 140
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 / 𝑛 ) < 𝑇 ↔ ¬ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
142 |
137 141
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 / 𝑛 ) < 𝑇 ) |
143 |
8
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 / 𝑛 ) < 𝑇 → ( abs ‘ 𝐵 ) ≤ 𝑅 ) ) |
144 |
81 143
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 / 𝑛 ) < 𝑇 → ( abs ‘ 𝐵 ) ≤ 𝑅 ) ) |
145 |
142 144
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝐵 ) ≤ 𝑅 ) |
146 |
122 115 123 145
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 / 𝑛 ) ) |
147 |
146 119
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 · ( 1 / 𝑛 ) ) ) |
148 |
78 82 121 147
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 𝑅 · ( 1 / 𝑛 ) ) ) |
149 |
21
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
150 |
112
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
151 |
78 149 150
|
fsummulc2 |
⊢ ( 𝜑 → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 𝑅 · ( 1 / 𝑛 ) ) ) |
152 |
148 151
|
breqtrrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ) |
153 |
104
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
154 |
72 153
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
155 |
154
|
recnd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℂ ) |
156 |
113
|
recnd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℂ ) |
157 |
11
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
158 |
157
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
159 |
51 69 9 158
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ) |
160 |
155 156 159
|
mvrladdd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) |
161 |
9 157
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
163 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
164 |
162 163
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ∈ ℝ ) |
165 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 0 ∈ ℝ ) |
166 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ( log ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
167 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∈ Fin ) |
168 |
105
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
169 |
168
|
rpreccld |
⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
170 |
169
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
171 |
169
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 0 ≤ ( 1 / 𝑛 ) ) |
172 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 ∈ ℝ+ ) |
173 |
172
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 0 ≤ 𝐴 ) |
174 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 < 1 ) |
175 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
176 |
174 175
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 < ( 0 + 1 ) ) |
177 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 ∈ ℝ ) |
178 |
|
0z |
⊢ 0 ∈ ℤ |
179 |
|
flbi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) = 0 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < ( 0 + 1 ) ) ) ) |
180 |
177 178 179
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ( ⌊ ‘ 𝐴 ) = 0 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < ( 0 + 1 ) ) ) ) |
181 |
173 176 180
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ⌊ ‘ 𝐴 ) = 0 ) |
182 |
181
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( 1 ... 0 ) ) |
183 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
184 |
182 183
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ∅ ) |
185 |
|
0ss |
⊢ ∅ ⊆ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) |
186 |
184 185
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
187 |
167 170 171 186
|
fsumless |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
188 |
162 163
|
suble0d |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ 0 ↔ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ) |
189 |
187 188
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ 0 ) |
190 |
22 27
|
logge0d |
⊢ ( 𝜑 → 0 ≤ ( log ‘ 𝑇 ) ) |
191 |
|
0le1 |
⊢ 0 ≤ 1 |
192 |
191
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
193 |
30 24 190 192
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 0 ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
195 |
164 165 166 189 194
|
letrd |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
196 |
|
harmonicubnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) |
197 |
57 196
|
sylan |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) |
198 |
|
harmoniclbnd |
⊢ ( ( 𝐴 / 𝑇 ) ∈ ℝ+ → ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
199 |
44 198
|
syl |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
200 |
199
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
201 |
1
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ ) |
202 |
|
peano2re |
⊢ ( ( log ‘ 𝐴 ) ∈ ℝ → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
203 |
201 202
|
syl |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
204 |
44
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 / 𝑇 ) ) ∈ ℝ ) |
205 |
|
le2sub |
⊢ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ∧ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) ∧ ( ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ∈ ℝ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
206 |
161 154 203 204 205
|
syl22anc |
⊢ ( 𝜑 → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
207 |
206
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
208 |
197 200 207
|
mp2and |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) |
209 |
201
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
210 |
24
|
recnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
211 |
30
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝑇 ) ∈ ℂ ) |
212 |
209 210 211
|
pnncand |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) + 1 ) − ( ( log ‘ 𝐴 ) − ( log ‘ 𝑇 ) ) ) = ( 1 + ( log ‘ 𝑇 ) ) ) |
213 |
1 29
|
relogdivd |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 / 𝑇 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝑇 ) ) ) |
214 |
213
|
oveq2d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) = ( ( ( log ‘ 𝐴 ) + 1 ) − ( ( log ‘ 𝐴 ) − ( log ‘ 𝑇 ) ) ) ) |
215 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
216 |
|
addcom |
⊢ ( ( ( log ‘ 𝑇 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( log ‘ 𝑇 ) + 1 ) = ( 1 + ( log ‘ 𝑇 ) ) ) |
217 |
211 215 216
|
sylancl |
⊢ ( 𝜑 → ( ( log ‘ 𝑇 ) + 1 ) = ( 1 + ( log ‘ 𝑇 ) ) ) |
218 |
212 214 217
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) = ( ( log ‘ 𝑇 ) + 1 ) ) |
219 |
218
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) = ( ( log ‘ 𝑇 ) + 1 ) ) |
220 |
208 219
|
breqtrd |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
221 |
195 220 57 24
|
ltlecasei |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
222 |
160 221
|
eqbrtrrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
223 |
|
lemul2a |
⊢ ( ( ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ∧ ( ( log ‘ 𝑇 ) + 1 ) ∈ ℝ ∧ ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) ∧ Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ≤ ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) |
224 |
113 31 3 222 223
|
syl31anc |
⊢ ( 𝜑 → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ≤ ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) |
225 |
83 114 32 152 224
|
letrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) |
226 |
77 83 20 32 110 225
|
le2addd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ) |
227 |
71 226
|
eqbrtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ) |
228 |
16 19 33 43 227
|
letrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ) |