Metamath Proof Explorer


Theorem fsumim

Description: The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)

Ref Expression
Hypotheses fsumre.1 ( 𝜑𝐴 ∈ Fin )
fsumre.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsumim ( 𝜑 → ( ℑ ‘ Σ 𝑘𝐴 𝐵 ) = Σ 𝑘𝐴 ( ℑ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fsumre.1 ( 𝜑𝐴 ∈ Fin )
2 fsumre.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
3 imf ℑ : ℂ ⟶ ℝ
4 ax-resscn ℝ ⊆ ℂ
5 fss ( ( ℑ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℑ : ℂ ⟶ ℂ )
6 3 4 5 mp2an ℑ : ℂ ⟶ ℂ
7 imadd ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ℑ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ℑ ‘ 𝑥 ) + ( ℑ ‘ 𝑦 ) ) )
8 1 2 6 7 fsumrelem ( 𝜑 → ( ℑ ‘ Σ 𝑘𝐴 𝐵 ) = Σ 𝑘𝐴 ( ℑ ‘ 𝐵 ) )