Step |
Hyp |
Ref |
Expression |
1 |
|
fsumiun.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumiun.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
3 |
|
fsumiun.3 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
4 |
|
fsumiun.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
5 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
6 |
|
sseq1 |
⊢ ( 𝑢 = ∅ → ( 𝑢 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
7 |
|
iuneq1 |
⊢ ( 𝑢 = ∅ → ∪ 𝑥 ∈ 𝑢 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵 ) |
8 |
|
0iun |
⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ |
9 |
7 8
|
eqtrdi |
⊢ ( 𝑢 = ∅ → ∪ 𝑥 ∈ 𝑢 𝐵 = ∅ ) |
10 |
9
|
sumeq1d |
⊢ ( 𝑢 = ∅ → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑘 ∈ ∅ 𝐶 ) |
11 |
|
sumeq1 |
⊢ ( 𝑢 = ∅ → Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑢 = ∅ → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ↔ Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
13 |
6 12
|
imbi12d |
⊢ ( 𝑢 = ∅ → ( ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ↔ ( ∅ ⊆ 𝐴 → Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑢 = ∅ → ( ( 𝜑 → ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
15 |
|
sseq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) |
16 |
|
iuneq1 |
⊢ ( 𝑢 = 𝑧 → ∪ 𝑥 ∈ 𝑢 𝐵 = ∪ 𝑥 ∈ 𝑧 𝐵 ) |
17 |
16
|
sumeq1d |
⊢ ( 𝑢 = 𝑧 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 ) |
18 |
|
sumeq1 |
⊢ ( 𝑢 = 𝑧 → Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) |
19 |
17 18
|
eqeq12d |
⊢ ( 𝑢 = 𝑧 → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ↔ Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
20 |
15 19
|
imbi12d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ↔ ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝜑 → ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ↔ ( 𝜑 → ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
22 |
|
sseq1 |
⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( 𝑢 ⊆ 𝐴 ↔ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ) |
23 |
|
iuneq1 |
⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ∪ 𝑥 ∈ 𝑢 𝐵 = ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) |
24 |
23
|
sumeq1d |
⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 ) |
25 |
|
sumeq1 |
⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) |
26 |
24 25
|
eqeq12d |
⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ↔ Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
27 |
22 26
|
imbi12d |
⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ↔ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( ( 𝜑 → ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ↔ ( 𝜑 → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
29 |
|
sseq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
30 |
|
iuneq1 |
⊢ ( 𝑢 = 𝐴 → ∪ 𝑥 ∈ 𝑢 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
31 |
30
|
sumeq1d |
⊢ ( 𝑢 = 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 ) |
32 |
|
sumeq1 |
⊢ ( 𝑢 = 𝐴 → Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) |
33 |
31 32
|
eqeq12d |
⊢ ( 𝑢 = 𝐴 → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ↔ Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
34 |
29 33
|
imbi12d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ↔ ( 𝐴 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
35 |
34
|
imbi2d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝜑 → ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
36 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐶 = 0 |
37 |
|
sum0 |
⊢ Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = 0 |
38 |
36 37
|
eqtr4i |
⊢ Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 |
39 |
38
|
2a1i |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
40 |
|
id |
⊢ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) |
41 |
40
|
unssad |
⊢ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → 𝑧 ⊆ 𝐴 ) |
42 |
41
|
imim1i |
⊢ ( ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
43 |
|
oveq1 |
⊢ ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) = ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) ) |
44 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐵 |
45 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
46 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
47 |
44 45 46
|
cbviun |
⊢ ∪ 𝑥 ∈ { 𝑤 } 𝐵 = ∪ 𝑧 ∈ { 𝑤 } ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
48 |
|
vex |
⊢ 𝑤 ∈ V |
49 |
|
csbeq1 |
⊢ ( 𝑧 = 𝑤 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
50 |
48 49
|
iunxsn |
⊢ ∪ 𝑧 ∈ { 𝑤 } ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
51 |
47 50
|
eqtri |
⊢ ∪ 𝑥 ∈ { 𝑤 } 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
52 |
51
|
ineq2i |
⊢ ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
53 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Disj 𝑥 ∈ 𝐴 𝐵 ) |
54 |
41
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝑧 ⊆ 𝐴 ) |
55 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) |
56 |
55
|
unssbd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → { 𝑤 } ⊆ 𝐴 ) |
57 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ¬ 𝑤 ∈ 𝑧 ) |
58 |
|
disjsn |
⊢ ( ( 𝑧 ∩ { 𝑤 } ) = ∅ ↔ ¬ 𝑤 ∈ 𝑧 ) |
59 |
57 58
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∩ { 𝑤 } ) = ∅ ) |
60 |
|
disjiun |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑧 ⊆ 𝐴 ∧ { 𝑤 } ⊆ 𝐴 ∧ ( 𝑧 ∩ { 𝑤 } ) = ∅ ) ) → ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) = ∅ ) |
61 |
53 54 56 59 60
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) = ∅ ) |
62 |
52 61
|
eqtr3id |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
63 |
|
iunxun |
⊢ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) |
64 |
51
|
uneq2i |
⊢ ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
65 |
63 64
|
eqtri |
⊢ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
66 |
65
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) |
67 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
68 |
67 55
|
ssfid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∪ { 𝑤 } ) ∈ Fin ) |
69 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
71 |
|
ssralv |
⊢ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∀ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) ) |
72 |
55 70 71
|
sylc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∀ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) |
73 |
|
iunfi |
⊢ ( ( ( 𝑧 ∪ { 𝑤 } ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) → ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) |
74 |
68 72 73
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) |
75 |
|
iunss1 |
⊢ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
76 |
75
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
77 |
76
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) → 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
78 |
|
eliun |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) |
79 |
4
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 → 𝐶 ∈ ℂ ) ) |
80 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 → 𝐶 ∈ ℂ ) ) |
81 |
78 80
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝐶 ∈ ℂ ) ) |
82 |
81
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝐶 ∈ ℂ ) |
83 |
77 82
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) → 𝐶 ∈ ℂ ) |
84 |
62 66 74 83
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) ) |
85 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∪ { 𝑤 } ) = ( 𝑧 ∪ { 𝑤 } ) ) |
86 |
55
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) → 𝑥 ∈ 𝐴 ) |
87 |
4
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
88 |
2 87
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
89 |
88
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
90 |
89
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
91 |
90
|
r19.21bi |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
92 |
86 91
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) → Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
93 |
59 85 68 92
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 = ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑥 ∈ { 𝑤 } Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
94 |
|
nfcv |
⊢ Ⅎ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 |
95 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
96 |
45 95
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 |
97 |
46
|
sumeq1d |
⊢ ( 𝑥 = 𝑧 → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 ) |
98 |
94 96 97
|
cbvsumi |
⊢ Σ 𝑥 ∈ { 𝑤 } Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ { 𝑤 } Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 |
99 |
48
|
snss |
⊢ ( 𝑤 ∈ 𝐴 ↔ { 𝑤 } ⊆ 𝐴 ) |
100 |
56 99
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝑤 ∈ 𝐴 ) |
101 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
102 |
101 95
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 |
103 |
102
|
nfel1 |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ∈ ℂ |
104 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
105 |
104
|
sumeq1d |
⊢ ( 𝑥 = 𝑤 → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) |
106 |
105
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ↔ Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ∈ ℂ ) ) |
107 |
103 106
|
rspc |
⊢ ( 𝑤 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ → Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ∈ ℂ ) ) |
108 |
100 90 107
|
sylc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ∈ ℂ ) |
109 |
49
|
sumeq1d |
⊢ ( 𝑧 = 𝑤 → Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) |
110 |
109
|
sumsn |
⊢ ( ( 𝑤 ∈ V ∧ Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ∈ ℂ ) → Σ 𝑧 ∈ { 𝑤 } Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) |
111 |
48 108 110
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑧 ∈ { 𝑤 } Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) |
112 |
98 111
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑥 ∈ { 𝑤 } Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) |
113 |
112
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑥 ∈ { 𝑤 } Σ 𝑘 ∈ 𝐵 𝐶 ) = ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) ) |
114 |
93 113
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 = ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) ) |
115 |
84 114
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ↔ ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) = ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) ) ) |
116 |
43 115
|
syl5ibr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
117 |
116
|
ex |
⊢ ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
118 |
117
|
a2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) → ( ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
119 |
42 118
|
syl5 |
⊢ ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) → ( ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
120 |
119
|
expcom |
⊢ ( ¬ 𝑤 ∈ 𝑧 → ( 𝜑 → ( ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
121 |
120
|
a2d |
⊢ ( ¬ 𝑤 ∈ 𝑧 → ( ( 𝜑 → ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) → ( 𝜑 → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
122 |
121
|
adantl |
⊢ ( ( 𝑧 ∈ Fin ∧ ¬ 𝑤 ∈ 𝑧 ) → ( ( 𝜑 → ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) → ( 𝜑 → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
123 |
14 21 28 35 39 122
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
124 |
1 123
|
mpcom |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
125 |
5 124
|
mpi |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) |