Metamath Proof Explorer


Theorem fsumiunle

Description: Upper bound for a sum of nonnegative terms over an indexed union. The inequality may be strict if the indexed union is non-disjoint, since in the right hand side, a summand may be counted several times. (Contributed by Thierry Arnoux, 1-Jan-2021)

Ref Expression
Hypotheses fsumiunle.1 ( 𝜑𝐴 ∈ Fin )
fsumiunle.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ Fin )
fsumiunle.3 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℝ )
fsumiunle.4 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘𝐵 ) → 0 ≤ 𝐶 )
Assertion fsumiunle ( 𝜑 → Σ 𝑘 𝑥𝐴 𝐵 𝐶 ≤ Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 fsumiunle.1 ( 𝜑𝐴 ∈ Fin )
2 fsumiunle.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ Fin )
3 fsumiunle.3 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℝ )
4 fsumiunle.4 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘𝐵 ) → 0 ≤ 𝐶 )
5 1 2 aciunf1 ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑥𝐴 𝐵1-1 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) )
6 f1f1orn ( 𝑓 : 𝑥𝐴 𝐵1-1 𝑥𝐴 ( { 𝑥 } × 𝐵 ) → 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 )
7 6 anim1i ( ( 𝑓 : 𝑥𝐴 𝐵1-1 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) → ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) )
8 f1f ( 𝑓 : 𝑥𝐴 𝐵1-1 𝑥𝐴 ( { 𝑥 } × 𝐵 ) → 𝑓 : 𝑥𝐴 𝐵 𝑥𝐴 ( { 𝑥 } × 𝐵 ) )
9 8 frnd ( 𝑓 : 𝑥𝐴 𝐵1-1 𝑥𝐴 ( { 𝑥 } × 𝐵 ) → ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) )
10 9 adantr ( ( 𝑓 : 𝑥𝐴 𝐵1-1 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) → ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) )
11 7 10 jca ( ( 𝑓 : 𝑥𝐴 𝐵1-1 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) → ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) )
12 11 eximi ( ∃ 𝑓 ( 𝑓 : 𝑥𝐴 𝐵1-1 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) → ∃ 𝑓 ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) )
13 5 12 syl ( 𝜑 → ∃ 𝑓 ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) )
14 csbeq1a ( 𝑘 = 𝑦𝐶 = 𝑦 / 𝑘 𝐶 )
15 nfcv 𝑦 𝑥𝐴 𝐵
16 nfcv 𝑘 𝑥𝐴 𝐵
17 nfcv 𝑦 𝐶
18 nfcsb1v 𝑘 𝑦 / 𝑘 𝐶
19 14 15 16 17 18 cbvsum Σ 𝑘 𝑥𝐴 𝐵 𝐶 = Σ 𝑦 𝑥𝐴 𝐵 𝑦 / 𝑘 𝐶
20 csbeq1 ( 𝑦 = ( 2nd𝑧 ) → 𝑦 / 𝑘 𝐶 = ( 2nd𝑧 ) / 𝑘 𝐶 )
21 snfi { 𝑥 } ∈ Fin
22 xpfi ( ( { 𝑥 } ∈ Fin ∧ 𝐵 ∈ Fin ) → ( { 𝑥 } × 𝐵 ) ∈ Fin )
23 21 2 22 sylancr ( ( 𝜑𝑥𝐴 ) → ( { 𝑥 } × 𝐵 ) ∈ Fin )
24 23 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∈ Fin )
25 iunfi ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∈ Fin ) → 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∈ Fin )
26 1 24 25 syl2anc ( 𝜑 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∈ Fin )
27 26 adantr ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∈ Fin )
28 simprr ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) )
29 27 28 ssfid ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → ran 𝑓 ∈ Fin )
30 simprl ( ( 𝜑 ∧ ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 )
31 f1ocnv ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 𝑓 : ran 𝑓1-1-onto 𝑥𝐴 𝐵 )
32 30 31 syl ( ( 𝜑 ∧ ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → 𝑓 : ran 𝑓1-1-onto 𝑥𝐴 𝐵 )
33 32 adantrlr ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → 𝑓 : ran 𝑓1-1-onto 𝑥𝐴 𝐵 )
34 nfv 𝑥 𝜑
35 nfcv 𝑥 𝑓
36 nfiu1 𝑥 𝑥𝐴 𝐵
37 35 nfrn 𝑥 ran 𝑓
38 35 36 37 nff1o 𝑥 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓
39 nfv 𝑥 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙
40 36 39 nfralw 𝑥𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙
41 38 40 nfan 𝑥 ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 )
42 nfcv 𝑥 ran 𝑓
43 nfiu1 𝑥 𝑥𝐴 ( { 𝑥 } × 𝐵 )
44 42 43 nfss 𝑥 ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 )
45 41 44 nfan 𝑥 ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) )
46 34 45 nfan 𝑥 ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) )
47 nfv 𝑥 𝑧 ∈ ran 𝑓
48 46 47 nfan 𝑥 ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 )
49 simpr ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 𝑥𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 𝑓𝑘 ) = 𝑧 )
50 49 fveq2d ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 𝑥𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 2nd ‘ ( 𝑓𝑘 ) ) = ( 2nd𝑧 ) )
51 simplr ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 𝑥𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → 𝑘 𝑥𝐴 𝐵 )
52 simp-4r ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) )
53 52 simpld ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) )
54 53 simprd ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 )
55 54 ad2antrr ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 𝑥𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 )
56 2fveq3 ( 𝑙 = 𝑘 → ( 2nd ‘ ( 𝑓𝑙 ) ) = ( 2nd ‘ ( 𝑓𝑘 ) ) )
57 id ( 𝑙 = 𝑘𝑙 = 𝑘 )
58 56 57 eqeq12d ( 𝑙 = 𝑘 → ( ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ↔ ( 2nd ‘ ( 𝑓𝑘 ) ) = 𝑘 ) )
59 58 rspcva ( ( 𝑘 𝑥𝐴 𝐵 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) → ( 2nd ‘ ( 𝑓𝑘 ) ) = 𝑘 )
60 51 55 59 syl2anc ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 𝑥𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 2nd ‘ ( 𝑓𝑘 ) ) = 𝑘 )
61 50 60 eqtr3d ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 𝑥𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 2nd𝑧 ) = 𝑘 )
62 53 simpld ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 )
63 62 ad2antrr ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 𝑥𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 )
64 f1ocnvfv1 ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓𝑘 𝑥𝐴 𝐵 ) → ( 𝑓 ‘ ( 𝑓𝑘 ) ) = 𝑘 )
65 63 51 64 syl2anc ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 𝑥𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 𝑓 ‘ ( 𝑓𝑘 ) ) = 𝑘 )
66 49 fveq2d ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 𝑥𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 𝑓 ‘ ( 𝑓𝑘 ) ) = ( 𝑓𝑧 ) )
67 61 65 66 3eqtr2rd ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 𝑥𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 𝑓𝑧 ) = ( 2nd𝑧 ) )
68 f1ofn ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓𝑓 Fn 𝑥𝐴 𝐵 )
69 62 68 syl ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → 𝑓 Fn 𝑥𝐴 𝐵 )
70 simpllr ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → 𝑧 ∈ ran 𝑓 )
71 fvelrnb ( 𝑓 Fn 𝑥𝐴 𝐵 → ( 𝑧 ∈ ran 𝑓 ↔ ∃ 𝑘 𝑥𝐴 𝐵 ( 𝑓𝑘 ) = 𝑧 ) )
72 71 biimpa ( ( 𝑓 Fn 𝑥𝐴 𝐵𝑧 ∈ ran 𝑓 ) → ∃ 𝑘 𝑥𝐴 𝐵 ( 𝑓𝑘 ) = 𝑧 )
73 69 70 72 syl2anc ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ∃ 𝑘 𝑥𝐴 𝐵 ( 𝑓𝑘 ) = 𝑧 )
74 67 73 r19.29a ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 𝑓𝑧 ) = ( 2nd𝑧 ) )
75 28 sselda ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) )
76 eliun ( 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) )
77 75 76 sylib ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → ∃ 𝑥𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) )
78 48 74 77 r19.29af ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → ( 𝑓𝑧 ) = ( 2nd𝑧 ) )
79 nfv 𝑘 ( 𝜑𝑦 𝑥𝐴 𝐵 )
80 nfcv 𝑘
81 18 80 nfel 𝑘 𝑦 / 𝑘 𝐶 ∈ ℂ
82 79 81 nfim 𝑘 ( ( 𝜑𝑦 𝑥𝐴 𝐵 ) → 𝑦 / 𝑘 𝐶 ∈ ℂ )
83 eleq1w ( 𝑘 = 𝑦 → ( 𝑘 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵 ) )
84 83 anbi2d ( 𝑘 = 𝑦 → ( ( 𝜑𝑘 𝑥𝐴 𝐵 ) ↔ ( 𝜑𝑦 𝑥𝐴 𝐵 ) ) )
85 14 eleq1d ( 𝑘 = 𝑦 → ( 𝐶 ∈ ℂ ↔ 𝑦 / 𝑘 𝐶 ∈ ℂ ) )
86 84 85 imbi12d ( 𝑘 = 𝑦 → ( ( ( 𝜑𝑘 𝑥𝐴 𝐵 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑𝑦 𝑥𝐴 𝐵 ) → 𝑦 / 𝑘 𝐶 ∈ ℂ ) ) )
87 nfcv 𝑥 𝑘
88 87 36 nfel 𝑥 𝑘 𝑥𝐴 𝐵
89 34 88 nfan 𝑥 ( 𝜑𝑘 𝑥𝐴 𝐵 )
90 3 adantllr ( ( ( ( 𝜑𝑘 𝑥𝐴 𝐵 ) ∧ 𝑥𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℝ )
91 90 recnd ( ( ( ( 𝜑𝑘 𝑥𝐴 𝐵 ) ∧ 𝑥𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℂ )
92 eliun ( 𝑘 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑘𝐵 )
93 92 biimpi ( 𝑘 𝑥𝐴 𝐵 → ∃ 𝑥𝐴 𝑘𝐵 )
94 93 adantl ( ( 𝜑𝑘 𝑥𝐴 𝐵 ) → ∃ 𝑥𝐴 𝑘𝐵 )
95 89 91 94 r19.29af ( ( 𝜑𝑘 𝑥𝐴 𝐵 ) → 𝐶 ∈ ℂ )
96 82 86 95 chvarfv ( ( 𝜑𝑦 𝑥𝐴 𝐵 ) → 𝑦 / 𝑘 𝐶 ∈ ℂ )
97 96 adantlr ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑦 𝑥𝐴 𝐵 ) → 𝑦 / 𝑘 𝐶 ∈ ℂ )
98 20 29 33 78 97 fsumf1o ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑦 𝑥𝐴 𝐵 𝑦 / 𝑘 𝐶 = Σ 𝑧 ∈ ran 𝑓 ( 2nd𝑧 ) / 𝑘 𝐶 )
99 19 98 syl5eq ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑘 𝑥𝐴 𝐵 𝐶 = Σ 𝑧 ∈ ran 𝑓 ( 2nd𝑧 ) / 𝑘 𝐶 )
100 99 eqcomd ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑧 ∈ ran 𝑓 ( 2nd𝑧 ) / 𝑘 𝐶 = Σ 𝑘 𝑥𝐴 𝐵 𝐶 )
101 nfcv 𝑥 𝑧
102 101 43 nfel 𝑥 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 )
103 34 102 nfan 𝑥 ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) )
104 xp2nd ( 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → ( 2nd𝑧 ) ∈ 𝐵 )
105 104 adantl ( ( ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd𝑧 ) ∈ 𝐵 )
106 3 ralrimiva ( ( 𝜑𝑥𝐴 ) → ∀ 𝑘𝐵 𝐶 ∈ ℝ )
107 106 adantlr ( ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥𝐴 ) → ∀ 𝑘𝐵 𝐶 ∈ ℝ )
108 107 adantr ( ( ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ∀ 𝑘𝐵 𝐶 ∈ ℝ )
109 nfcsb1v 𝑘 ( 2nd𝑧 ) / 𝑘 𝐶
110 109 nfel1 𝑘 ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ℝ
111 csbeq1a ( 𝑘 = ( 2nd𝑧 ) → 𝐶 = ( 2nd𝑧 ) / 𝑘 𝐶 )
112 111 eleq1d ( 𝑘 = ( 2nd𝑧 ) → ( 𝐶 ∈ ℝ ↔ ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ℝ ) )
113 110 112 rspc ( ( 2nd𝑧 ) ∈ 𝐵 → ( ∀ 𝑘𝐵 𝐶 ∈ ℝ → ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ℝ ) )
114 113 imp ( ( ( 2nd𝑧 ) ∈ 𝐵 ∧ ∀ 𝑘𝐵 𝐶 ∈ ℝ ) → ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ℝ )
115 105 108 114 syl2anc ( ( ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ℝ )
116 76 biimpi ( 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) → ∃ 𝑥𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) )
117 116 adantl ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) → ∃ 𝑥𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) )
118 103 115 117 r19.29af ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) → ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ℝ )
119 118 adantlr ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) → ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ℝ )
120 xp1st ( 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → ( 1st𝑧 ) ∈ { 𝑥 } )
121 elsni ( ( 1st𝑧 ) ∈ { 𝑥 } → ( 1st𝑧 ) = 𝑥 )
122 120 121 syl ( 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → ( 1st𝑧 ) = 𝑥 )
123 122 104 jca ( 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → ( ( 1st𝑧 ) = 𝑥 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) )
124 simplll ( ( ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ ( ( 1st𝑧 ) = 𝑥 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) ) → 𝜑 )
125 simplr ( ( ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ ( ( 1st𝑧 ) = 𝑥 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) ) → 𝑥𝐴 )
126 4 ralrimiva ( ( 𝜑𝑥𝐴 ) → ∀ 𝑘𝐵 0 ≤ 𝐶 )
127 124 125 126 syl2anc ( ( ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ ( ( 1st𝑧 ) = 𝑥 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) ) → ∀ 𝑘𝐵 0 ≤ 𝐶 )
128 123 127 sylan2 ( ( ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ∀ 𝑘𝐵 0 ≤ 𝐶 )
129 nfcv 𝑘 0
130 nfcv 𝑘
131 129 130 109 nfbr 𝑘 0 ≤ ( 2nd𝑧 ) / 𝑘 𝐶
132 111 breq2d ( 𝑘 = ( 2nd𝑧 ) → ( 0 ≤ 𝐶 ↔ 0 ≤ ( 2nd𝑧 ) / 𝑘 𝐶 ) )
133 131 132 rspc ( ( 2nd𝑧 ) ∈ 𝐵 → ( ∀ 𝑘𝐵 0 ≤ 𝐶 → 0 ≤ ( 2nd𝑧 ) / 𝑘 𝐶 ) )
134 133 imp ( ( ( 2nd𝑧 ) ∈ 𝐵 ∧ ∀ 𝑘𝐵 0 ≤ 𝐶 ) → 0 ≤ ( 2nd𝑧 ) / 𝑘 𝐶 )
135 105 128 134 syl2anc ( ( ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → 0 ≤ ( 2nd𝑧 ) / 𝑘 𝐶 )
136 103 135 117 r19.29af ( ( 𝜑𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) → 0 ≤ ( 2nd𝑧 ) / 𝑘 𝐶 )
137 136 adantlr ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) → 0 ≤ ( 2nd𝑧 ) / 𝑘 𝐶 )
138 27 119 137 28 fsumless ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑧 ∈ ran 𝑓 ( 2nd𝑧 ) / 𝑘 𝐶 ≤ Σ 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝐶 )
139 100 138 eqbrtrrd ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑘 𝑥𝐴 𝐵 𝐶 ≤ Σ 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝐶 )
140 nfcv 𝑦 𝐵
141 nfcv 𝑘 𝐵
142 14 140 141 17 18 cbvsum Σ 𝑘𝐵 𝐶 = Σ 𝑦𝐵 𝑦 / 𝑘 𝐶
143 142 a1i ( 𝜑 → Σ 𝑘𝐵 𝐶 = Σ 𝑦𝐵 𝑦 / 𝑘 𝐶 )
144 143 sumeq2sdv ( 𝜑 → Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 = Σ 𝑥𝐴 Σ 𝑦𝐵 𝑦 / 𝑘 𝐶 )
145 vex 𝑥 ∈ V
146 vex 𝑦 ∈ V
147 145 146 op2ndd ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑧 ) = 𝑦 )
148 147 eqcomd ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑦 = ( 2nd𝑧 ) )
149 148 csbeq1d ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑦 / 𝑘 𝐶 = ( 2nd𝑧 ) / 𝑘 𝐶 )
150 149 eqcomd ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑧 ) / 𝑘 𝐶 = 𝑦 / 𝑘 𝐶 )
151 nfv 𝑘 ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 )
152 18 nfel1 𝑘 𝑦 / 𝑘 𝐶 ∈ ℂ
153 151 152 nfim 𝑘 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) → 𝑦 / 𝑘 𝐶 ∈ ℂ )
154 eleq1w ( 𝑘 = 𝑦 → ( 𝑘𝐵𝑦𝐵 ) )
155 154 anbi2d ( 𝑘 = 𝑦 → ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘𝐵 ) ↔ ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) ) )
156 155 85 imbi12d ( 𝑘 = 𝑦 → ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℂ ) ↔ ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) → 𝑦 / 𝑘 𝐶 ∈ ℂ ) ) )
157 3 recnd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℂ )
158 153 156 157 chvarfv ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) → 𝑦 / 𝑘 𝐶 ∈ ℂ )
159 158 anasss ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑦 / 𝑘 𝐶 ∈ ℂ )
160 150 1 2 159 fsum2d ( 𝜑 → Σ 𝑥𝐴 Σ 𝑦𝐵 𝑦 / 𝑘 𝐶 = Σ 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝐶 )
161 144 160 eqtrd ( 𝜑 → Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 = Σ 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝐶 )
162 161 adantr ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 = Σ 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝐶 )
163 139 162 breqtrrd ( ( 𝜑 ∧ ( ( 𝑓 : 𝑥𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑥𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑘 𝑥𝐴 𝐵 𝐶 ≤ Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 )
164 13 163 exlimddv ( 𝜑 → Σ 𝑘 𝑥𝐴 𝐵 𝐶 ≤ Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 )