Step |
Hyp |
Ref |
Expression |
1 |
|
fsumiunle.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumiunle.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
3 |
|
fsumiunle.3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) |
4 |
|
fsumiunle.4 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 0 ≤ 𝐶 ) |
5 |
1 2
|
aciunf1 |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ) |
6 |
|
f1f1orn |
⊢ ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) → 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ) |
7 |
6
|
anim1i |
⊢ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) → ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ) |
8 |
|
f1f |
⊢ ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) → 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
9 |
8
|
frnd |
⊢ ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) → ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) → ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
11 |
7 10
|
jca |
⊢ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) → ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
12 |
11
|
eximi |
⊢ ( ∃ 𝑓 ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) → ∃ 𝑓 ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → ∃ 𝑓 ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
14 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
16 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐶 |
17 |
14 15 16
|
cbvsum |
⊢ Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ⦋ 𝑦 / 𝑘 ⦌ 𝐶 |
18 |
|
csbeq1 |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
19 |
|
snfi |
⊢ { 𝑥 } ∈ Fin |
20 |
|
xpfi |
⊢ ( ( { 𝑥 } ∈ Fin ∧ 𝐵 ∈ Fin ) → ( { 𝑥 } × 𝐵 ) ∈ Fin ) |
21 |
19 2 20
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( { 𝑥 } × 𝐵 ) ∈ Fin ) |
22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ Fin ) |
23 |
|
iunfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ Fin ) → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ Fin ) |
24 |
1 22 23
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ Fin ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ Fin ) |
26 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
27 |
25 26
|
ssfid |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → ran 𝑓 ∈ Fin ) |
28 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ) |
29 |
|
f1ocnv |
⊢ ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 → ◡ 𝑓 : ran 𝑓 –1-1-onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → ◡ 𝑓 : ran 𝑓 –1-1-onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
31 |
30
|
adantrlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → ◡ 𝑓 : ran 𝑓 –1-1-onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
32 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
33 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑓 |
34 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
35 |
33
|
nfrn |
⊢ Ⅎ 𝑥 ran 𝑓 |
36 |
33 34 35
|
nff1o |
⊢ Ⅎ 𝑥 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 |
37 |
|
nfv |
⊢ Ⅎ 𝑥 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 |
38 |
34 37
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 |
39 |
36 38
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) |
40 |
|
nfcv |
⊢ Ⅎ 𝑥 ran 𝑓 |
41 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
42 |
40 41
|
nfss |
⊢ Ⅎ 𝑥 ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
43 |
39 42
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
44 |
32 43
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
45 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ ran 𝑓 |
46 |
44 45
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) |
47 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑓 ‘ 𝑘 ) = 𝑧 ) → ( 𝑓 ‘ 𝑘 ) = 𝑧 ) |
48 |
47
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑓 ‘ 𝑘 ) = 𝑧 ) → ( 2nd ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 2nd ‘ 𝑧 ) ) |
49 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑓 ‘ 𝑘 ) = 𝑧 ) → 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
50 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
51 |
50
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ) |
52 |
51
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑓 ‘ 𝑘 ) = 𝑧 ) → ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) |
54 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑘 → ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = ( 2nd ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
55 |
|
id |
⊢ ( 𝑙 = 𝑘 → 𝑙 = 𝑘 ) |
56 |
54 55
|
eqeq12d |
⊢ ( 𝑙 = 𝑘 → ( ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ↔ ( 2nd ‘ ( 𝑓 ‘ 𝑘 ) ) = 𝑘 ) ) |
57 |
56
|
rspcva |
⊢ ( ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) → ( 2nd ‘ ( 𝑓 ‘ 𝑘 ) ) = 𝑘 ) |
58 |
49 53 57
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑓 ‘ 𝑘 ) = 𝑧 ) → ( 2nd ‘ ( 𝑓 ‘ 𝑘 ) ) = 𝑘 ) |
59 |
48 58
|
eqtr3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑓 ‘ 𝑘 ) = 𝑧 ) → ( 2nd ‘ 𝑧 ) = 𝑘 ) |
60 |
51
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ) |
61 |
60
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑓 ‘ 𝑘 ) = 𝑧 ) → 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ) |
62 |
|
f1ocnvfv1 |
⊢ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑘 ) ) = 𝑘 ) |
63 |
61 49 62
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑓 ‘ 𝑘 ) = 𝑧 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑘 ) ) = 𝑘 ) |
64 |
47
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑓 ‘ 𝑘 ) = 𝑧 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( ◡ 𝑓 ‘ 𝑧 ) ) |
65 |
59 63 64
|
3eqtr2rd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑓 ‘ 𝑘 ) = 𝑧 ) → ( ◡ 𝑓 ‘ 𝑧 ) = ( 2nd ‘ 𝑧 ) ) |
66 |
|
f1ofn |
⊢ ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 → 𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ) |
67 |
60 66
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → 𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ) |
68 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → 𝑧 ∈ ran 𝑓 ) |
69 |
|
fvelrnb |
⊢ ( 𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ∈ ran 𝑓 ↔ ∃ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑓 ‘ 𝑘 ) = 𝑧 ) ) |
70 |
69
|
biimpa |
⊢ ( ( 𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ran 𝑓 ) → ∃ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑓 ‘ 𝑘 ) = 𝑧 ) |
71 |
67 68 70
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ∃ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑓 ‘ 𝑘 ) = 𝑧 ) |
72 |
65 71
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ( ◡ 𝑓 ‘ 𝑧 ) = ( 2nd ‘ 𝑧 ) ) |
73 |
26
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
74 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) |
75 |
73 74
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) |
76 |
46 72 75
|
r19.29af |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → ( ◡ 𝑓 ‘ 𝑧 ) = ( 2nd ‘ 𝑧 ) ) |
77 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
78 |
|
nfcv |
⊢ Ⅎ 𝑘 ℂ |
79 |
16 78
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ |
80 |
77 79
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
81 |
|
eleq1w |
⊢ ( 𝑘 = 𝑦 → ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
82 |
81
|
anbi2d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝜑 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ) |
83 |
14
|
eleq1d |
⊢ ( 𝑘 = 𝑦 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
84 |
82 83
|
imbi12d |
⊢ ( 𝑘 = 𝑦 → ( ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) ) |
85 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑘 |
86 |
85 34
|
nfel |
⊢ Ⅎ 𝑥 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
87 |
32 86
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
88 |
3
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) |
89 |
88
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
90 |
|
eliun |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) |
91 |
90
|
biimpi |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) |
92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) |
93 |
87 89 92
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝐶 ∈ ℂ ) |
94 |
80 84 93
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
95 |
94
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
96 |
18 27 31 76 95
|
fsumf1o |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ⦋ 𝑦 / 𝑘 ⦌ 𝐶 = Σ 𝑧 ∈ ran 𝑓 ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
97 |
17 96
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑧 ∈ ran 𝑓 ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
98 |
97
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑧 ∈ ran 𝑓 ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 = Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 ) |
99 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
100 |
99 41
|
nfel |
⊢ Ⅎ 𝑥 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
101 |
32 100
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
102 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → ( 2nd ‘ 𝑧 ) ∈ 𝐵 ) |
103 |
102
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd ‘ 𝑧 ) ∈ 𝐵 ) |
104 |
3
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℝ ) |
105 |
104
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℝ ) |
106 |
105
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℝ ) |
107 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 |
108 |
107
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ∈ ℝ |
109 |
|
csbeq1a |
⊢ ( 𝑘 = ( 2nd ‘ 𝑧 ) → 𝐶 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
110 |
109
|
eleq1d |
⊢ ( 𝑘 = ( 2nd ‘ 𝑧 ) → ( 𝐶 ∈ ℝ ↔ ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ∈ ℝ ) ) |
111 |
108 110
|
rspc |
⊢ ( ( 2nd ‘ 𝑧 ) ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℝ → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ∈ ℝ ) ) |
112 |
111
|
imp |
⊢ ( ( ( 2nd ‘ 𝑧 ) ∈ 𝐵 ∧ ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℝ ) → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ∈ ℝ ) |
113 |
103 106 112
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ∈ ℝ ) |
114 |
74
|
biimpi |
⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) |
115 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) |
116 |
101 113 115
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ∈ ℝ ) |
117 |
116
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ∈ ℝ ) |
118 |
|
xp1st |
⊢ ( 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ { 𝑥 } ) |
119 |
|
elsni |
⊢ ( ( 1st ‘ 𝑧 ) ∈ { 𝑥 } → ( 1st ‘ 𝑧 ) = 𝑥 ) |
120 |
118 119
|
syl |
⊢ ( 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → ( 1st ‘ 𝑧 ) = 𝑥 ) |
121 |
120 102
|
jca |
⊢ ( 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → ( ( 1st ‘ 𝑧 ) = 𝑥 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝐵 ) ) |
122 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 1st ‘ 𝑧 ) = 𝑥 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝐵 ) ) → 𝜑 ) |
123 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 1st ‘ 𝑧 ) = 𝑥 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
124 |
4
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐵 0 ≤ 𝐶 ) |
125 |
122 123 124
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 1st ‘ 𝑧 ) = 𝑥 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 0 ≤ 𝐶 ) |
126 |
121 125
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 0 ≤ 𝐶 ) |
127 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
128 |
|
nfcv |
⊢ Ⅎ 𝑘 ≤ |
129 |
127 128 107
|
nfbr |
⊢ Ⅎ 𝑘 0 ≤ ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 |
130 |
109
|
breq2d |
⊢ ( 𝑘 = ( 2nd ‘ 𝑧 ) → ( 0 ≤ 𝐶 ↔ 0 ≤ ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) ) |
131 |
129 130
|
rspc |
⊢ ( ( 2nd ‘ 𝑧 ) ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 0 ≤ 𝐶 → 0 ≤ ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) ) |
132 |
131
|
imp |
⊢ ( ( ( 2nd ‘ 𝑧 ) ∈ 𝐵 ∧ ∀ 𝑘 ∈ 𝐵 0 ≤ 𝐶 ) → 0 ≤ ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
133 |
103 126 132
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) → 0 ≤ ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
134 |
101 133 115
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) → 0 ≤ ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
135 |
134
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) → 0 ≤ ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
136 |
25 117 135 26
|
fsumless |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑧 ∈ ran 𝑓 ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ≤ Σ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
137 |
98 136
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 ≤ Σ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
138 |
14 15 16
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑦 ∈ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ 𝐶 |
139 |
138
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑦 ∈ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ) |
140 |
139
|
sumeq2sdv |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ) |
141 |
|
vex |
⊢ 𝑥 ∈ V |
142 |
|
vex |
⊢ 𝑦 ∈ V |
143 |
141 142
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
144 |
143
|
eqcomd |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑦 = ( 2nd ‘ 𝑧 ) ) |
145 |
144
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ⦋ 𝑦 / 𝑘 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
146 |
145
|
eqcomd |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 = ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ) |
147 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) |
148 |
16
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ |
149 |
147 148
|
nfim |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
150 |
|
eleq1w |
⊢ ( 𝑘 = 𝑦 → ( 𝑘 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
151 |
150
|
anbi2d |
⊢ ( 𝑘 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) ) |
152 |
151 83
|
imbi12d |
⊢ ( 𝑘 = 𝑦 → ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) ) |
153 |
3
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
154 |
149 152 153
|
chvarfv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
155 |
154
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
156 |
146 1 2 155
|
fsum2d |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ 𝐶 = Σ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
157 |
140 156
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
158 |
157
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ 𝐶 ) |
159 |
137 158
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ∪ 𝑥 ∈ 𝐴 𝐵 –1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 ≤ Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) |
160 |
13 159
|
exlimddv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 ≤ Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) |