| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumiunle.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | fsumiunle.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | fsumiunle.3 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  𝐵 )  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | fsumiunle.4 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  𝐵 )  →  0  ≤  𝐶 ) | 
						
							| 5 | 1 2 | aciunf1 | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1→ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 ) ) | 
						
							| 6 |  | f1f1orn | ⊢ ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1→ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  →  𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓 ) | 
						
							| 7 | 6 | anim1i | ⊢ ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1→ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  →  ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 ) ) | 
						
							| 8 |  | f1f | ⊢ ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1→ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  →  𝑓 : ∪  𝑥  ∈  𝐴 𝐵 ⟶ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 9 | 8 | frnd | ⊢ ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1→ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  →  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1→ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  →  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 11 | 7 10 | jca | ⊢ ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1→ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  →  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) ) | 
						
							| 12 | 11 | eximi | ⊢ ( ∃ 𝑓 ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1→ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  →  ∃ 𝑓 ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  ∃ 𝑓 ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) ) | 
						
							| 14 |  | csbeq1a | ⊢ ( 𝑘  =  𝑦  →  𝐶  =  ⦋ 𝑦  /  𝑘 ⦌ 𝐶 ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑦 𝐶 | 
						
							| 16 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑦  /  𝑘 ⦌ 𝐶 | 
						
							| 17 | 14 15 16 | cbvsum | ⊢ Σ 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 𝐶  =  Σ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ⦋ 𝑦  /  𝑘 ⦌ 𝐶 | 
						
							| 18 |  | csbeq1 | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑧 )  →  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 19 |  | snfi | ⊢ { 𝑥 }  ∈  Fin | 
						
							| 20 |  | xpfi | ⊢ ( ( { 𝑥 }  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( { 𝑥 }  ×  𝐵 )  ∈  Fin ) | 
						
							| 21 | 19 2 20 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( { 𝑥 }  ×  𝐵 )  ∈  Fin ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ∈  Fin ) | 
						
							| 23 |  | iunfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ∈  Fin )  →  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ∈  Fin ) | 
						
							| 24 | 1 22 23 | syl2anc | ⊢ ( 𝜑  →  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ∈  Fin ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ∈  Fin ) | 
						
							| 26 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 27 | 25 26 | ssfid | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  ran  𝑓  ∈  Fin ) | 
						
							| 28 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓 ) | 
						
							| 29 |  | f1ocnv | ⊢ ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  →  ◡ 𝑓 : ran  𝑓 –1-1-onto→ ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  ◡ 𝑓 : ran  𝑓 –1-1-onto→ ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 31 | 30 | adantrlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  ◡ 𝑓 : ran  𝑓 –1-1-onto→ ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 32 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑥 𝑓 | 
						
							| 34 |  | nfiu1 | ⊢ Ⅎ 𝑥 ∪  𝑥  ∈  𝐴 𝐵 | 
						
							| 35 | 33 | nfrn | ⊢ Ⅎ 𝑥 ran  𝑓 | 
						
							| 36 | 33 34 35 | nff1o | ⊢ Ⅎ 𝑥 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓 | 
						
							| 37 |  | nfv | ⊢ Ⅎ 𝑥 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 | 
						
							| 38 | 34 37 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 | 
						
							| 39 | 36 38 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 ) | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑥 ran  𝑓 | 
						
							| 41 |  | nfiu1 | ⊢ Ⅎ 𝑥 ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) | 
						
							| 42 | 40 41 | nfss | ⊢ Ⅎ 𝑥 ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) | 
						
							| 43 | 39 42 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 44 | 32 43 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑥 𝑧  ∈  ran  𝑓 | 
						
							| 46 | 44 45 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  ( 𝑓 ‘ 𝑘 )  =  𝑧 )  →  ( 𝑓 ‘ 𝑘 )  =  𝑧 ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  ( 𝑓 ‘ 𝑘 )  =  𝑧 )  →  ( 2nd  ‘ ( 𝑓 ‘ 𝑘 ) )  =  ( 2nd  ‘ 𝑧 ) ) | 
						
							| 49 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  ( 𝑓 ‘ 𝑘 )  =  𝑧 )  →  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 50 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) ) | 
						
							| 51 | 50 | simpld | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 ) ) | 
						
							| 52 | 51 | simprd | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  ( 𝑓 ‘ 𝑘 )  =  𝑧 )  →  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 ) | 
						
							| 54 |  | 2fveq3 | ⊢ ( 𝑙  =  𝑘  →  ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  ( 2nd  ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 55 |  | id | ⊢ ( 𝑙  =  𝑘  →  𝑙  =  𝑘 ) | 
						
							| 56 | 54 55 | eqeq12d | ⊢ ( 𝑙  =  𝑘  →  ( ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙  ↔  ( 2nd  ‘ ( 𝑓 ‘ 𝑘 ) )  =  𝑘 ) ) | 
						
							| 57 | 56 | rspcva | ⊢ ( ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  →  ( 2nd  ‘ ( 𝑓 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 58 | 49 53 57 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  ( 𝑓 ‘ 𝑘 )  =  𝑧 )  →  ( 2nd  ‘ ( 𝑓 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 59 | 48 58 | eqtr3d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  ( 𝑓 ‘ 𝑘 )  =  𝑧 )  →  ( 2nd  ‘ 𝑧 )  =  𝑘 ) | 
						
							| 60 | 51 | simpld | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓 ) | 
						
							| 61 | 60 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  ( 𝑓 ‘ 𝑘 )  =  𝑧 )  →  𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓 ) | 
						
							| 62 |  | f1ocnvfv1 | ⊢ ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 63 | 61 49 62 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  ( 𝑓 ‘ 𝑘 )  =  𝑧 )  →  ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 64 | 47 | fveq2d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  ( 𝑓 ‘ 𝑘 )  =  𝑧 )  →  ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑘 ) )  =  ( ◡ 𝑓 ‘ 𝑧 ) ) | 
						
							| 65 | 59 63 64 | 3eqtr2rd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  ( 𝑓 ‘ 𝑘 )  =  𝑧 )  →  ( ◡ 𝑓 ‘ 𝑧 )  =  ( 2nd  ‘ 𝑧 ) ) | 
						
							| 66 |  | f1ofn | ⊢ ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  →  𝑓  Fn  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 67 | 60 66 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  𝑓  Fn  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 68 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  𝑧  ∈  ran  𝑓 ) | 
						
							| 69 |  | fvelrnb | ⊢ ( 𝑓  Fn  ∪  𝑥  ∈  𝐴 𝐵  →  ( 𝑧  ∈  ran  𝑓  ↔  ∃ 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑓 ‘ 𝑘 )  =  𝑧 ) ) | 
						
							| 70 | 69 | biimpa | ⊢ ( ( 𝑓  Fn  ∪  𝑥  ∈  𝐴 𝐵  ∧  𝑧  ∈  ran  𝑓 )  →  ∃ 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑓 ‘ 𝑘 )  =  𝑧 ) | 
						
							| 71 | 67 68 70 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  ∃ 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑓 ‘ 𝑘 )  =  𝑧 ) | 
						
							| 72 | 65 71 | r19.29a | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  ( ◡ 𝑓 ‘ 𝑧 )  =  ( 2nd  ‘ 𝑧 ) ) | 
						
							| 73 | 26 | sselda | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  →  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 74 |  | eliun | ⊢ ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 75 | 73 74 | sylib | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  →  ∃ 𝑥  ∈  𝐴 𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 76 | 46 72 75 | r19.29af | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ran  𝑓 )  →  ( ◡ 𝑓 ‘ 𝑧 )  =  ( 2nd  ‘ 𝑧 ) ) | 
						
							| 77 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 78 |  | nfcv | ⊢ Ⅎ 𝑘 ℂ | 
						
							| 79 | 16 78 | nfel | ⊢ Ⅎ 𝑘 ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ | 
						
							| 80 | 77 79 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 81 |  | eleq1w | ⊢ ( 𝑘  =  𝑦  →  ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 82 | 81 | anbi2d | ⊢ ( 𝑘  =  𝑦  →  ( ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ↔  ( 𝜑  ∧  𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) ) | 
						
							| 83 | 14 | eleq1d | ⊢ ( 𝑘  =  𝑦  →  ( 𝐶  ∈  ℂ  ↔  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ ) ) | 
						
							| 84 | 82 83 | imbi12d | ⊢ ( 𝑘  =  𝑦  →  ( ( ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  𝐶  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ ) ) ) | 
						
							| 85 |  | nfcv | ⊢ Ⅎ 𝑥 𝑘 | 
						
							| 86 | 85 34 | nfel | ⊢ Ⅎ 𝑥 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 | 
						
							| 87 | 32 86 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 88 | 3 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  𝐵 )  →  𝐶  ∈  ℝ ) | 
						
							| 89 | 88 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  𝐵 )  →  𝐶  ∈  ℂ ) | 
						
							| 90 |  | eliun | ⊢ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ∃ 𝑥  ∈  𝐴 𝑘  ∈  𝐵 ) | 
						
							| 91 | 90 | biimpi | ⊢ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ∃ 𝑥  ∈  𝐴 𝑘  ∈  𝐵 ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑘  ∈  𝐵 ) | 
						
							| 93 | 87 89 92 | r19.29af | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  𝐶  ∈  ℂ ) | 
						
							| 94 | 80 84 93 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 95 | 94 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 96 | 18 27 31 76 95 | fsumf1o | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  Σ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ⦋ 𝑦  /  𝑘 ⦌ 𝐶  =  Σ 𝑧  ∈  ran  𝑓 ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 97 | 17 96 | eqtrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  Σ 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 𝐶  =  Σ 𝑧  ∈  ran  𝑓 ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 98 | 97 | eqcomd | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  Σ 𝑧  ∈  ran  𝑓 ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶  =  Σ 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 𝐶 ) | 
						
							| 99 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 100 | 99 41 | nfel | ⊢ Ⅎ 𝑥 𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) | 
						
							| 101 | 32 100 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 102 |  | xp2nd | ⊢ ( 𝑧  ∈  ( { 𝑥 }  ×  𝐵 )  →  ( 2nd  ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  ( 2nd  ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 104 | 3 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑘  ∈  𝐵 𝐶  ∈  ℝ ) | 
						
							| 105 | 104 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑘  ∈  𝐵 𝐶  ∈  ℝ ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  ∀ 𝑘  ∈  𝐵 𝐶  ∈  ℝ ) | 
						
							| 107 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 | 
						
							| 108 | 107 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶  ∈  ℝ | 
						
							| 109 |  | csbeq1a | ⊢ ( 𝑘  =  ( 2nd  ‘ 𝑧 )  →  𝐶  =  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 110 | 109 | eleq1d | ⊢ ( 𝑘  =  ( 2nd  ‘ 𝑧 )  →  ( 𝐶  ∈  ℝ  ↔  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶  ∈  ℝ ) ) | 
						
							| 111 | 108 110 | rspc | ⊢ ( ( 2nd  ‘ 𝑧 )  ∈  𝐵  →  ( ∀ 𝑘  ∈  𝐵 𝐶  ∈  ℝ  →  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶  ∈  ℝ ) ) | 
						
							| 112 | 111 | imp | ⊢ ( ( ( 2nd  ‘ 𝑧 )  ∈  𝐵  ∧  ∀ 𝑘  ∈  𝐵 𝐶  ∈  ℝ )  →  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶  ∈  ℝ ) | 
						
							| 113 | 103 106 112 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶  ∈  ℝ ) | 
						
							| 114 | 74 | biimpi | ⊢ ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 115 | 114 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  →  ∃ 𝑥  ∈  𝐴 𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) ) | 
						
							| 116 | 101 113 115 | r19.29af | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  →  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶  ∈  ℝ ) | 
						
							| 117 | 116 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  →  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶  ∈  ℝ ) | 
						
							| 118 |  | xp1st | ⊢ ( 𝑧  ∈  ( { 𝑥 }  ×  𝐵 )  →  ( 1st  ‘ 𝑧 )  ∈  { 𝑥 } ) | 
						
							| 119 |  | elsni | ⊢ ( ( 1st  ‘ 𝑧 )  ∈  { 𝑥 }  →  ( 1st  ‘ 𝑧 )  =  𝑥 ) | 
						
							| 120 | 118 119 | syl | ⊢ ( 𝑧  ∈  ( { 𝑥 }  ×  𝐵 )  →  ( 1st  ‘ 𝑧 )  =  𝑥 ) | 
						
							| 121 | 120 102 | jca | ⊢ ( 𝑧  ∈  ( { 𝑥 }  ×  𝐵 )  →  ( ( 1st  ‘ 𝑧 )  =  𝑥  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝐵 ) ) | 
						
							| 122 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑥  ∈  𝐴 )  ∧  ( ( 1st  ‘ 𝑧 )  =  𝑥  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝐵 ) )  →  𝜑 ) | 
						
							| 123 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑥  ∈  𝐴 )  ∧  ( ( 1st  ‘ 𝑧 )  =  𝑥  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝐵 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 124 | 4 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑘  ∈  𝐵 0  ≤  𝐶 ) | 
						
							| 125 | 122 123 124 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑥  ∈  𝐴 )  ∧  ( ( 1st  ‘ 𝑧 )  =  𝑥  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝐵 ) )  →  ∀ 𝑘  ∈  𝐵 0  ≤  𝐶 ) | 
						
							| 126 | 121 125 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  ∀ 𝑘  ∈  𝐵 0  ≤  𝐶 ) | 
						
							| 127 |  | nfcv | ⊢ Ⅎ 𝑘 0 | 
						
							| 128 |  | nfcv | ⊢ Ⅎ 𝑘  ≤ | 
						
							| 129 | 127 128 107 | nfbr | ⊢ Ⅎ 𝑘 0  ≤  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 | 
						
							| 130 | 109 | breq2d | ⊢ ( 𝑘  =  ( 2nd  ‘ 𝑧 )  →  ( 0  ≤  𝐶  ↔  0  ≤  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 131 | 129 130 | rspc | ⊢ ( ( 2nd  ‘ 𝑧 )  ∈  𝐵  →  ( ∀ 𝑘  ∈  𝐵 0  ≤  𝐶  →  0  ≤  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 132 | 131 | imp | ⊢ ( ( ( 2nd  ‘ 𝑧 )  ∈  𝐵  ∧  ∀ 𝑘  ∈  𝐵 0  ≤  𝐶 )  →  0  ≤  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 133 | 103 126 132 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ( { 𝑥 }  ×  𝐵 ) )  →  0  ≤  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 134 | 101 133 115 | r19.29af | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  →  0  ≤  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 135 | 134 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  ∧  𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  →  0  ≤  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 136 | 25 117 135 26 | fsumless | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  Σ 𝑧  ∈  ran  𝑓 ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶  ≤  Σ 𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 137 | 98 136 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  Σ 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 𝐶  ≤  Σ 𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 138 | 14 15 16 | cbvsum | ⊢ Σ 𝑘  ∈  𝐵 𝐶  =  Σ 𝑦  ∈  𝐵 ⦋ 𝑦  /  𝑘 ⦌ 𝐶 | 
						
							| 139 | 138 | a1i | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐵 𝐶  =  Σ 𝑦  ∈  𝐵 ⦋ 𝑦  /  𝑘 ⦌ 𝐶 ) | 
						
							| 140 | 139 | sumeq2sdv | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 Σ 𝑘  ∈  𝐵 𝐶  =  Σ 𝑥  ∈  𝐴 Σ 𝑦  ∈  𝐵 ⦋ 𝑦  /  𝑘 ⦌ 𝐶 ) | 
						
							| 141 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 142 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 143 | 141 142 | op2ndd | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 2nd  ‘ 𝑧 )  =  𝑦 ) | 
						
							| 144 | 143 | eqcomd | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  𝑦  =  ( 2nd  ‘ 𝑧 ) ) | 
						
							| 145 | 144 | csbeq1d | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 146 | 145 | eqcomd | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑘 ⦌ 𝐶 ) | 
						
							| 147 |  | nfv | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 ) | 
						
							| 148 | 16 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ | 
						
							| 149 | 147 148 | nfim | ⊢ Ⅎ 𝑘 ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 150 |  | eleq1w | ⊢ ( 𝑘  =  𝑦  →  ( 𝑘  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 151 | 150 | anbi2d | ⊢ ( 𝑘  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  𝐵 )  ↔  ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 152 | 151 83 | imbi12d | ⊢ ( 𝑘  =  𝑦  →  ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  𝐵 )  →  𝐶  ∈  ℂ )  ↔  ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ ) ) ) | 
						
							| 153 | 3 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  𝐵 )  →  𝐶  ∈  ℂ ) | 
						
							| 154 | 149 152 153 | chvarfv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 155 | 154 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ⦋ 𝑦  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 156 | 146 1 2 155 | fsum2d | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 Σ 𝑦  ∈  𝐵 ⦋ 𝑦  /  𝑘 ⦌ 𝐶  =  Σ 𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 157 | 140 156 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 Σ 𝑘  ∈  𝐵 𝐶  =  Σ 𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 158 | 157 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  Σ 𝑥  ∈  𝐴 Σ 𝑘  ∈  𝐵 𝐶  =  Σ 𝑧  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ⦋ ( 2nd  ‘ 𝑧 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 159 | 137 158 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ∪  𝑥  ∈  𝐴 𝐵 –1-1-onto→ ran  𝑓  ∧  ∀ 𝑙  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 2nd  ‘ ( 𝑓 ‘ 𝑙 ) )  =  𝑙 )  ∧  ran  𝑓  ⊆  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ) )  →  Σ 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 𝐶  ≤  Σ 𝑥  ∈  𝐴 Σ 𝑘  ∈  𝐵 𝐶 ) | 
						
							| 160 | 13 159 | exlimddv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 𝐶  ≤  Σ 𝑥  ∈  𝐴 Σ 𝑘  ∈  𝐵 𝐶 ) |