Step |
Hyp |
Ref |
Expression |
1 |
|
fsumiunss.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
fsumiunss.dj |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
3 |
|
fsumiunss.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
4 |
|
fsumiunss.fi |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐵 ∩ 𝐷 ) |
6 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐷 |
8 |
6 7
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
9 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
10 |
9
|
ineq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∩ 𝐷 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
11 |
5 8 10
|
cbviun |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐷 ) = ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
12 |
11
|
sumeq1i |
⊢ Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑘 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 |
13 |
12
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑘 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 ) |
14 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
15 |
14
|
biimpi |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ∃ 𝑦 ∈ 𝐴 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
16 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
17 |
15 16
|
sylib |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑧 |
19 |
|
nfiu1 |
⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
20 |
18 19
|
nfel |
⊢ Ⅎ 𝑦 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
21 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → 𝑦 ∈ 𝐴 ) |
22 |
|
ne0i |
⊢ ( 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ ) |
23 |
22
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ ) |
24 |
21 23
|
jca |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → ( 𝑦 ∈ 𝐴 ∧ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
25 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
26 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
27 |
26
|
nfci |
⊢ Ⅎ 𝑥 𝐴 |
28 |
|
nfcv |
⊢ Ⅎ 𝑥 ∅ |
29 |
8 28
|
nfne |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ |
30 |
10
|
neeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∩ 𝐷 ) ≠ ∅ ↔ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
31 |
25 27 29 30
|
elrabf |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ↔ ( 𝑦 ∈ 𝐴 ∧ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
32 |
24 31
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ) |
33 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
34 |
32 33
|
jca |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
35 |
34
|
a1i |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) ) |
36 |
20 35
|
eximd |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → ∃ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) ) |
37 |
17 36
|
mpd |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
38 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
39 |
37 38
|
sylibr |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ∃ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
40 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ↔ ∃ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
41 |
39 40
|
sylibr |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
42 |
41
|
rgen |
⊢ ∀ 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
43 |
|
dfss3 |
⊢ ( ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ↔ ∀ 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
44 |
42 43
|
mpbir |
⊢ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
45 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } → 𝑦 ∈ 𝐴 ) |
46 |
45
|
ssriv |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ⊆ 𝐴 |
47 |
|
iunss1 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ⊆ 𝐴 → ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
48 |
46 47
|
ax-mp |
⊢ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
49 |
44 48
|
eqssi |
⊢ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) = ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
50 |
49
|
sumeq1i |
⊢ Σ 𝑘 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑘 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 |
51 |
50
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑘 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 ) |
52 |
1 2 4
|
disjinfi |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∈ Fin ) |
53 |
|
inss2 |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ 𝐷 |
54 |
53
|
a1i |
⊢ ( 𝜑 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ 𝐷 ) |
55 |
|
ssfi |
⊢ ( ( 𝐷 ∈ Fin ∧ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ 𝐷 ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ∈ Fin ) |
56 |
4 54 55
|
syl2anc |
⊢ ( 𝜑 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ∈ Fin ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ∈ Fin ) |
58 |
46
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ⊆ 𝐴 ) |
59 |
|
inss1 |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
60 |
59
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
61 |
60
|
a1i |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
62 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
63 |
|
eqcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
64 |
63
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
65 |
|
eqcom |
⊢ ( 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
66 |
65
|
imbi2i |
⊢ ( ( 𝑦 = 𝑥 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
67 |
64 66
|
bitri |
⊢ ( ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
68 |
9 67
|
mpbi |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
69 |
6 62 68
|
cbvdisj |
⊢ ( Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐵 ) |
70 |
2 69
|
sylibr |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
71 |
|
disjss2 |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ( Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → Disj 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
72 |
61 70 71
|
sylc |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
73 |
|
disjss1 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ⊆ 𝐴 → ( Disj 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → Disj 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
74 |
58 72 73
|
sylc |
⊢ ( 𝜑 → Disj 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
75 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) → 𝜑 ) |
76 |
45
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) → 𝑦 ∈ 𝐴 ) |
77 |
59
|
sseli |
⊢ ( 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
78 |
77
|
adantl |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) → 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
80 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
81 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑘 |
82 |
81 6
|
nfel |
⊢ Ⅎ 𝑥 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
83 |
80 26 82
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
84 |
|
nfv |
⊢ Ⅎ 𝑥 𝐶 ∈ ℂ |
85 |
83 84
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ℂ ) |
86 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
87 |
9
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ∈ 𝐵 ↔ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
88 |
86 87
|
3anbi23d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
89 |
88
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ℂ ) ) ) |
90 |
85 89 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ℂ ) |
91 |
75 76 79 90
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) → 𝐶 ∈ ℂ ) |
92 |
52 57 74 91
|
fsumiun |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 ) |
93 |
68
|
ineq1d |
⊢ ( 𝑦 = 𝑥 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) = ( 𝐵 ∩ 𝐷 ) ) |
94 |
93
|
sumeq1d |
⊢ ( 𝑦 = 𝑥 → Σ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 ) |
95 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } |
96 |
|
nfcv |
⊢ Ⅎ 𝑦 { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } |
97 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
98 |
8 97
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 |
99 |
|
nfcv |
⊢ Ⅎ 𝑦 Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 |
100 |
94 95 96 98 99
|
cbvsum |
⊢ Σ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 |
101 |
100
|
a1i |
⊢ ( 𝜑 → Σ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 ) |
102 |
92 101
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 ) |
103 |
13 51 102
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 ) |