Step |
Hyp |
Ref |
Expression |
1 |
|
nn0p1nn |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 + 1 ) ∈ ℕ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 + 1 ) ∈ ℕ ) |
3 |
2
|
nncnd |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 + 1 ) ∈ ℂ ) |
4 |
|
fzfid |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 0 ... 𝑀 ) ∈ Fin ) |
5 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 0 ... 𝑀 ) → 𝑛 ∈ ℤ ) |
6 |
5
|
zcnd |
⊢ ( 𝑛 ∈ ( 0 ... 𝑀 ) → 𝑛 ∈ ℂ ) |
7 |
|
simpl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
8 |
|
expcl |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑛 ↑ 𝐾 ) ∈ ℂ ) |
9 |
6 7 8
|
syl2anr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( 𝑛 ↑ 𝐾 ) ∈ ℂ ) |
10 |
4 9
|
fsumcl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑛 ∈ ( 0 ... 𝑀 ) ( 𝑛 ↑ 𝐾 ) ∈ ℂ ) |
11 |
2
|
nnne0d |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 + 1 ) ≠ 0 ) |
12 |
4 3 9
|
fsummulc2 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐾 + 1 ) · Σ 𝑛 ∈ ( 0 ... 𝑀 ) ( 𝑛 ↑ 𝐾 ) ) = Σ 𝑛 ∈ ( 0 ... 𝑀 ) ( ( 𝐾 + 1 ) · ( 𝑛 ↑ 𝐾 ) ) ) |
13 |
|
bpolydif |
⊢ ( ( ( 𝐾 + 1 ) ∈ ℕ ∧ 𝑛 ∈ ℂ ) → ( ( ( 𝐾 + 1 ) BernPoly ( 𝑛 + 1 ) ) − ( ( 𝐾 + 1 ) BernPoly 𝑛 ) ) = ( ( 𝐾 + 1 ) · ( 𝑛 ↑ ( ( 𝐾 + 1 ) − 1 ) ) ) ) |
14 |
2 6 13
|
syl2an |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐾 + 1 ) BernPoly ( 𝑛 + 1 ) ) − ( ( 𝐾 + 1 ) BernPoly 𝑛 ) ) = ( ( 𝐾 + 1 ) · ( 𝑛 ↑ ( ( 𝐾 + 1 ) − 1 ) ) ) ) |
15 |
|
nn0cn |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℂ ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐾 ∈ ℂ ) |
17 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
18 |
|
pncan |
⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
19 |
16 17 18
|
sylancl |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
20 |
19
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( 𝑛 ↑ ( ( 𝐾 + 1 ) − 1 ) ) = ( 𝑛 ↑ 𝐾 ) ) |
21 |
20
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐾 + 1 ) · ( 𝑛 ↑ ( ( 𝐾 + 1 ) − 1 ) ) ) = ( ( 𝐾 + 1 ) · ( 𝑛 ↑ 𝐾 ) ) ) |
22 |
14 21
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐾 + 1 ) BernPoly ( 𝑛 + 1 ) ) − ( ( 𝐾 + 1 ) BernPoly 𝑛 ) ) = ( ( 𝐾 + 1 ) · ( 𝑛 ↑ 𝐾 ) ) ) |
23 |
22
|
sumeq2dv |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑛 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐾 + 1 ) BernPoly ( 𝑛 + 1 ) ) − ( ( 𝐾 + 1 ) BernPoly 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ... 𝑀 ) ( ( 𝐾 + 1 ) · ( 𝑛 ↑ 𝐾 ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐾 + 1 ) BernPoly 𝑘 ) = ( ( 𝐾 + 1 ) BernPoly 𝑛 ) ) |
25 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐾 + 1 ) BernPoly 𝑘 ) = ( ( 𝐾 + 1 ) BernPoly ( 𝑛 + 1 ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝐾 + 1 ) BernPoly 𝑘 ) = ( ( 𝐾 + 1 ) BernPoly 0 ) ) |
27 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑀 + 1 ) → ( ( 𝐾 + 1 ) BernPoly 𝑘 ) = ( ( 𝐾 + 1 ) BernPoly ( 𝑀 + 1 ) ) ) |
28 |
|
nn0z |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) |
29 |
28
|
adantl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℤ ) |
30 |
|
peano2nn0 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
31 |
30
|
adantl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 + 1 ) ∈ ℕ0 ) |
32 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
33 |
31 32
|
eleqtrdi |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
34 |
|
peano2nn0 |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) → ( 𝐾 + 1 ) ∈ ℕ0 ) |
36 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑀 + 1 ) ) → 𝑘 ∈ ℕ0 ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
38 |
37
|
nn0cnd |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) → 𝑘 ∈ ℂ ) |
39 |
|
bpolycl |
⊢ ( ( ( 𝐾 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℂ ) → ( ( 𝐾 + 1 ) BernPoly 𝑘 ) ∈ ℂ ) |
40 |
35 38 39
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) → ( ( 𝐾 + 1 ) BernPoly 𝑘 ) ∈ ℂ ) |
41 |
24 25 26 27 29 33 40
|
telfsum2 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑛 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐾 + 1 ) BernPoly ( 𝑛 + 1 ) ) − ( ( 𝐾 + 1 ) BernPoly 𝑛 ) ) = ( ( ( 𝐾 + 1 ) BernPoly ( 𝑀 + 1 ) ) − ( ( 𝐾 + 1 ) BernPoly 0 ) ) ) |
42 |
12 23 41
|
3eqtr2d |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐾 + 1 ) · Σ 𝑛 ∈ ( 0 ... 𝑀 ) ( 𝑛 ↑ 𝐾 ) ) = ( ( ( 𝐾 + 1 ) BernPoly ( 𝑀 + 1 ) ) − ( ( 𝐾 + 1 ) BernPoly 0 ) ) ) |
43 |
3 10 11 42
|
mvllmuld |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑛 ∈ ( 0 ... 𝑀 ) ( 𝑛 ↑ 𝐾 ) = ( ( ( ( 𝐾 + 1 ) BernPoly ( 𝑀 + 1 ) ) − ( ( 𝐾 + 1 ) BernPoly 0 ) ) / ( 𝐾 + 1 ) ) ) |