Step |
Hyp |
Ref |
Expression |
1 |
|
fsumle.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumle.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
fsumle.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
4 |
|
fsumle.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
5 |
3 2
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
6 |
3 2
|
subge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 0 ≤ ( 𝐶 − 𝐵 ) ↔ 𝐵 ≤ 𝐶 ) ) |
7 |
4 6
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ ( 𝐶 − 𝐵 ) ) |
8 |
1 5 7
|
fsumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) ) |
9 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
10 |
2
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
11 |
1 9 10
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) = ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
12 |
8 11
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
13 |
1 3
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 ∈ ℝ ) |
14 |
1 2
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
15 |
13 14
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ↔ Σ 𝑘 ∈ 𝐴 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
16 |
12 15
|
mpbid |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐶 ) |