Step |
Hyp |
Ref |
Expression |
1 |
|
fsumge0.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumge0.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
fsumge0.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
4 |
|
fsumless.4 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
5 |
|
difss |
⊢ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐴 |
6 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐴 ) → ( 𝐴 ∖ 𝐶 ) ∈ Fin ) |
7 |
1 5 6
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐶 ) ∈ Fin ) |
8 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑘 ∈ 𝐴 ) |
9 |
8 2
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → 𝐵 ∈ ℝ ) |
10 |
8 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → 0 ≤ 𝐵 ) |
11 |
7 9 10
|
fsumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ) |
12 |
1 4
|
ssfid |
⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
13 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝑘 ∈ 𝐴 ) |
14 |
13 2
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐵 ∈ ℝ ) |
15 |
12 14
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 𝐵 ∈ ℝ ) |
16 |
7 9
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ∈ ℝ ) |
17 |
15 16
|
addge01d |
⊢ ( 𝜑 → ( 0 ≤ Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ↔ Σ 𝑘 ∈ 𝐶 𝐵 ≤ ( Σ 𝑘 ∈ 𝐶 𝐵 + Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ) ) ) |
18 |
11 17
|
mpbid |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 𝐵 ≤ ( Σ 𝑘 ∈ 𝐶 𝐵 + Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ) ) |
19 |
|
disjdif |
⊢ ( 𝐶 ∩ ( 𝐴 ∖ 𝐶 ) ) = ∅ |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( 𝐶 ∩ ( 𝐴 ∖ 𝐶 ) ) = ∅ ) |
21 |
|
undif |
⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐶 ∪ ( 𝐴 ∖ 𝐶 ) ) = 𝐴 ) |
22 |
4 21
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∪ ( 𝐴 ∖ 𝐶 ) ) = 𝐴 ) |
23 |
22
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ ( 𝐴 ∖ 𝐶 ) ) ) |
24 |
2
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
25 |
20 23 1 24
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( Σ 𝑘 ∈ 𝐶 𝐵 + Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ) ) |
26 |
18 25
|
breqtrrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |