Metamath Proof Explorer


Theorem fsumless

Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumge0.1 ( 𝜑𝐴 ∈ Fin )
fsumge0.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
fsumge0.3 ( ( 𝜑𝑘𝐴 ) → 0 ≤ 𝐵 )
fsumless.4 ( 𝜑𝐶𝐴 )
Assertion fsumless ( 𝜑 → Σ 𝑘𝐶 𝐵 ≤ Σ 𝑘𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 fsumge0.1 ( 𝜑𝐴 ∈ Fin )
2 fsumge0.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
3 fsumge0.3 ( ( 𝜑𝑘𝐴 ) → 0 ≤ 𝐵 )
4 fsumless.4 ( 𝜑𝐶𝐴 )
5 difss ( 𝐴𝐶 ) ⊆ 𝐴
6 ssfi ( ( 𝐴 ∈ Fin ∧ ( 𝐴𝐶 ) ⊆ 𝐴 ) → ( 𝐴𝐶 ) ∈ Fin )
7 1 5 6 sylancl ( 𝜑 → ( 𝐴𝐶 ) ∈ Fin )
8 eldifi ( 𝑘 ∈ ( 𝐴𝐶 ) → 𝑘𝐴 )
9 8 2 sylan2 ( ( 𝜑𝑘 ∈ ( 𝐴𝐶 ) ) → 𝐵 ∈ ℝ )
10 8 3 sylan2 ( ( 𝜑𝑘 ∈ ( 𝐴𝐶 ) ) → 0 ≤ 𝐵 )
11 7 9 10 fsumge0 ( 𝜑 → 0 ≤ Σ 𝑘 ∈ ( 𝐴𝐶 ) 𝐵 )
12 1 4 ssfid ( 𝜑𝐶 ∈ Fin )
13 4 sselda ( ( 𝜑𝑘𝐶 ) → 𝑘𝐴 )
14 13 2 syldan ( ( 𝜑𝑘𝐶 ) → 𝐵 ∈ ℝ )
15 12 14 fsumrecl ( 𝜑 → Σ 𝑘𝐶 𝐵 ∈ ℝ )
16 7 9 fsumrecl ( 𝜑 → Σ 𝑘 ∈ ( 𝐴𝐶 ) 𝐵 ∈ ℝ )
17 15 16 addge01d ( 𝜑 → ( 0 ≤ Σ 𝑘 ∈ ( 𝐴𝐶 ) 𝐵 ↔ Σ 𝑘𝐶 𝐵 ≤ ( Σ 𝑘𝐶 𝐵 + Σ 𝑘 ∈ ( 𝐴𝐶 ) 𝐵 ) ) )
18 11 17 mpbid ( 𝜑 → Σ 𝑘𝐶 𝐵 ≤ ( Σ 𝑘𝐶 𝐵 + Σ 𝑘 ∈ ( 𝐴𝐶 ) 𝐵 ) )
19 disjdif ( 𝐶 ∩ ( 𝐴𝐶 ) ) = ∅
20 19 a1i ( 𝜑 → ( 𝐶 ∩ ( 𝐴𝐶 ) ) = ∅ )
21 undif ( 𝐶𝐴 ↔ ( 𝐶 ∪ ( 𝐴𝐶 ) ) = 𝐴 )
22 4 21 sylib ( 𝜑 → ( 𝐶 ∪ ( 𝐴𝐶 ) ) = 𝐴 )
23 22 eqcomd ( 𝜑𝐴 = ( 𝐶 ∪ ( 𝐴𝐶 ) ) )
24 2 recnd ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
25 20 23 1 24 fsumsplit ( 𝜑 → Σ 𝑘𝐴 𝐵 = ( Σ 𝑘𝐶 𝐵 + Σ 𝑘 ∈ ( 𝐴𝐶 ) 𝐵 ) )
26 18 25 breqtrrd ( 𝜑 → Σ 𝑘𝐶 𝐵 ≤ Σ 𝑘𝐴 𝐵 )