| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumge0.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | fsumge0.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fsumge0.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 4 |  | fsumless.4 | ⊢ ( 𝜑  →  𝐶  ⊆  𝐴 ) | 
						
							| 5 |  | difss | ⊢ ( 𝐴  ∖  𝐶 )  ⊆  𝐴 | 
						
							| 6 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝐴  ∖  𝐶 )  ⊆  𝐴 )  →  ( 𝐴  ∖  𝐶 )  ∈  Fin ) | 
						
							| 7 | 1 5 6 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝐶 )  ∈  Fin ) | 
						
							| 8 |  | eldifi | ⊢ ( 𝑘  ∈  ( 𝐴  ∖  𝐶 )  →  𝑘  ∈  𝐴 ) | 
						
							| 9 | 8 2 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐶 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 10 | 8 3 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐶 ) )  →  0  ≤  𝐵 ) | 
						
							| 11 | 7 9 10 | fsumge0 | ⊢ ( 𝜑  →  0  ≤  Σ 𝑘  ∈  ( 𝐴  ∖  𝐶 ) 𝐵 ) | 
						
							| 12 | 1 4 | ssfid | ⊢ ( 𝜑  →  𝐶  ∈  Fin ) | 
						
							| 13 | 4 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  𝑘  ∈  𝐴 ) | 
						
							| 14 | 13 2 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  𝐵  ∈  ℝ ) | 
						
							| 15 | 12 14 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 𝐵  ∈  ℝ ) | 
						
							| 16 | 7 9 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐴  ∖  𝐶 ) 𝐵  ∈  ℝ ) | 
						
							| 17 | 15 16 | addge01d | ⊢ ( 𝜑  →  ( 0  ≤  Σ 𝑘  ∈  ( 𝐴  ∖  𝐶 ) 𝐵  ↔  Σ 𝑘  ∈  𝐶 𝐵  ≤  ( Σ 𝑘  ∈  𝐶 𝐵  +  Σ 𝑘  ∈  ( 𝐴  ∖  𝐶 ) 𝐵 ) ) ) | 
						
							| 18 | 11 17 | mpbid | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 𝐵  ≤  ( Σ 𝑘  ∈  𝐶 𝐵  +  Σ 𝑘  ∈  ( 𝐴  ∖  𝐶 ) 𝐵 ) ) | 
						
							| 19 |  | disjdif | ⊢ ( 𝐶  ∩  ( 𝐴  ∖  𝐶 ) )  =  ∅ | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  ( 𝐶  ∩  ( 𝐴  ∖  𝐶 ) )  =  ∅ ) | 
						
							| 21 |  | undif | ⊢ ( 𝐶  ⊆  𝐴  ↔  ( 𝐶  ∪  ( 𝐴  ∖  𝐶 ) )  =  𝐴 ) | 
						
							| 22 | 4 21 | sylib | ⊢ ( 𝜑  →  ( 𝐶  ∪  ( 𝐴  ∖  𝐶 ) )  =  𝐴 ) | 
						
							| 23 | 22 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  ( 𝐶  ∪  ( 𝐴  ∖  𝐶 ) ) ) | 
						
							| 24 | 2 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 25 | 20 23 1 24 | fsumsplit | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  =  ( Σ 𝑘  ∈  𝐶 𝐵  +  Σ 𝑘  ∈  ( 𝐴  ∖  𝐶 ) 𝐵 ) ) | 
						
							| 26 | 18 25 | breqtrrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 𝐵  ≤  Σ 𝑘  ∈  𝐴 𝐵 ) |