| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumlessf.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fsumge0.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fsumge0.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
fsumge0.l |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 5 |
|
fsumless.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝐴 |
| 7 |
1 6
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) |
| 8 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 9 |
8
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ |
| 10 |
7 9
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
| 11 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) |
| 12 |
11
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ) ) |
| 13 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) |
| 15 |
12 14
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) ) |
| 16 |
10 15 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑘 ≤ |
| 19 |
17 18 8
|
nfbr |
⊢ Ⅎ 𝑘 0 ≤ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 20 |
7 19
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 ≤ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 21 |
13
|
breq2d |
⊢ ( 𝑘 = 𝑗 → ( 0 ≤ 𝐵 ↔ 0 ≤ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
| 22 |
12 21
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 ≤ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) ) |
| 23 |
20 22 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 ≤ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 24 |
2 16 23 5
|
fsumless |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐶 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ≤ Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐵 |
| 26 |
13 25 8
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝐶 𝐵 = Σ 𝑗 ∈ 𝐶 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 27 |
13 25 8
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 28 |
26 27
|
breq12i |
⊢ ( Σ 𝑘 ∈ 𝐶 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ↔ Σ 𝑗 ∈ 𝐶 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ≤ Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 29 |
24 28
|
sylibr |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |