Step |
Hyp |
Ref |
Expression |
1 |
|
fsumlt.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumlt.2 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
3 |
|
fsumlt.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
|
fsumlt.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
5 |
|
fsumlt.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 < 𝐶 ) |
6 |
|
difrp |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 ↔ ( 𝐶 − 𝐵 ) ∈ ℝ+ ) ) |
7 |
3 4 6
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 < 𝐶 ↔ ( 𝐶 − 𝐵 ) ∈ ℝ+ ) ) |
8 |
5 7
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 − 𝐵 ) ∈ ℝ+ ) |
9 |
1 2 8
|
fsumrpcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) ∈ ℝ+ ) |
10 |
9
|
rpgt0d |
⊢ ( 𝜑 → 0 < Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) ) |
11 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
12 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
13 |
1 11 12
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) = ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
14 |
10 13
|
breqtrd |
⊢ ( 𝜑 → 0 < ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
15 |
1 3
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
16 |
1 4
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 ∈ ℝ ) |
17 |
15 16
|
posdifd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝐴 𝐶 ↔ 0 < ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) ) |
18 |
14 17
|
mpbird |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝐴 𝐶 ) |