| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumlt.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
fsumlt.2 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 3 |
|
fsumlt.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
fsumlt.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 5 |
|
fsumlt.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 < 𝐶 ) |
| 6 |
|
difrp |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 ↔ ( 𝐶 − 𝐵 ) ∈ ℝ+ ) ) |
| 7 |
3 4 6
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 < 𝐶 ↔ ( 𝐶 − 𝐵 ) ∈ ℝ+ ) ) |
| 8 |
5 7
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 − 𝐵 ) ∈ ℝ+ ) |
| 9 |
1 2 8
|
fsumrpcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) ∈ ℝ+ ) |
| 10 |
9
|
rpgt0d |
⊢ ( 𝜑 → 0 < Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) ) |
| 11 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 12 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 13 |
1 11 12
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) = ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 14 |
10 13
|
breqtrd |
⊢ ( 𝜑 → 0 < ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 15 |
1 3
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 16 |
1 4
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 ∈ ℝ ) |
| 17 |
15 16
|
posdifd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝐴 𝐶 ↔ 0 < ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) ) |
| 18 |
14 17
|
mpbird |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝐴 𝐶 ) |