Step |
Hyp |
Ref |
Expression |
1 |
|
fsummulc2.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsummulc2.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
3 |
|
fsummulc2.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
4 |
1 2 3
|
fsummulc2 |
⊢ ( 𝜑 → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) |
5 |
1 3
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
6 |
5 2
|
mulcomd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
8 |
3 7
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
9 |
8
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) |
10 |
4 6 9
|
3eqtr4d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) ) |