Metamath Proof Explorer


Theorem fsummulc1

Description: A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsummulc2.1 ( 𝜑𝐴 ∈ Fin )
fsummulc2.2 ( 𝜑𝐶 ∈ ℂ )
fsummulc2.3 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsummulc1 ( 𝜑 → ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐵 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 fsummulc2.1 ( 𝜑𝐴 ∈ Fin )
2 fsummulc2.2 ( 𝜑𝐶 ∈ ℂ )
3 fsummulc2.3 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
4 1 2 3 fsummulc2 ( 𝜑 → ( 𝐶 · Σ 𝑘𝐴 𝐵 ) = Σ 𝑘𝐴 ( 𝐶 · 𝐵 ) )
5 1 3 fsumcl ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℂ )
6 5 2 mulcomd ( 𝜑 → ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = ( 𝐶 · Σ 𝑘𝐴 𝐵 ) )
7 2 adantr ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ℂ )
8 3 7 mulcomd ( ( 𝜑𝑘𝐴 ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) )
9 8 sumeq2dv ( 𝜑 → Σ 𝑘𝐴 ( 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐶 · 𝐵 ) )
10 4 6 9 3eqtr4d ( 𝜑 → ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐵 · 𝐶 ) )