Step |
Hyp |
Ref |
Expression |
1 |
|
fsummulc1f.ph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fsummulclf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fsummulclf.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
fsummulclf.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
5 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐴 |
7 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
8 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐵 |
9 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
10 |
5 6 7 8 9
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
11 |
10
|
oveq1i |
⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = ( Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = ( Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) ) |
13 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝐴 |
14 |
1 13
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) |
15 |
9
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ |
16 |
14 15
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
17 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ) ) |
19 |
5
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
20 |
18 19
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
21 |
16 20 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
22 |
2 3 21
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) = Σ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) ) |
23 |
|
eqcom |
⊢ ( 𝑘 = 𝑗 ↔ 𝑗 = 𝑘 ) |
24 |
23
|
imbi1i |
⊢ ( ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑗 = 𝑘 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
25 |
|
eqcom |
⊢ ( 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐵 ) |
26 |
25
|
imbi2i |
⊢ ( ( 𝑗 = 𝑘 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐵 ) ) |
27 |
24 26
|
bitri |
⊢ ( ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐵 ) ) |
28 |
5 27
|
mpbi |
⊢ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐵 ) |
29 |
28
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
30 |
|
nfcv |
⊢ Ⅎ 𝑘 · |
31 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐶 |
32 |
9 30 31
|
nfov |
⊢ Ⅎ 𝑘 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝐵 · 𝐶 ) |
34 |
29 7 6 32 33
|
cbvsum |
⊢ Σ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) |
35 |
34
|
a1i |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) ) |
36 |
12 22 35
|
3eqtrd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) ) |