Metamath Proof Explorer


Theorem fsummulc1f

Description: Closure of a finite sum of complex numbers A ( k ) . A version of fsummulc1 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsummulc1f.ph 𝑘 𝜑
fsummulclf.a ( 𝜑𝐴 ∈ Fin )
fsummulclf.c ( 𝜑𝐶 ∈ ℂ )
fsummulclf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsummulc1f ( 𝜑 → ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐵 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 fsummulc1f.ph 𝑘 𝜑
2 fsummulclf.a ( 𝜑𝐴 ∈ Fin )
3 fsummulclf.c ( 𝜑𝐶 ∈ ℂ )
4 fsummulclf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
5 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
6 nfcv 𝑗 𝐴
7 nfcv 𝑘 𝐴
8 nfcv 𝑗 𝐵
9 nfcsb1v 𝑘 𝑗 / 𝑘 𝐵
10 5 6 7 8 9 cbvsum Σ 𝑘𝐴 𝐵 = Σ 𝑗𝐴 𝑗 / 𝑘 𝐵
11 10 oveq1i ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = ( Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 · 𝐶 )
12 11 a1i ( 𝜑 → ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = ( Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 · 𝐶 ) )
13 nfv 𝑘 𝑗𝐴
14 1 13 nfan 𝑘 ( 𝜑𝑗𝐴 )
15 9 nfel1 𝑘 𝑗 / 𝑘 𝐵 ∈ ℂ
16 14 15 nfim 𝑘 ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ )
17 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝐴𝑗𝐴 ) )
18 17 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑗𝐴 ) ) )
19 5 eleq1d ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ 𝑗 / 𝑘 𝐵 ∈ ℂ ) )
20 18 19 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ ) ) )
21 16 20 4 chvarfv ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ )
22 2 3 21 fsummulc1 ( 𝜑 → ( Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 · 𝐶 ) = Σ 𝑗𝐴 ( 𝑗 / 𝑘 𝐵 · 𝐶 ) )
23 eqcom ( 𝑘 = 𝑗𝑗 = 𝑘 )
24 23 imbi1i ( ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 ) ↔ ( 𝑗 = 𝑘𝐵 = 𝑗 / 𝑘 𝐵 ) )
25 eqcom ( 𝐵 = 𝑗 / 𝑘 𝐵 𝑗 / 𝑘 𝐵 = 𝐵 )
26 25 imbi2i ( ( 𝑗 = 𝑘𝐵 = 𝑗 / 𝑘 𝐵 ) ↔ ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐵 = 𝐵 ) )
27 24 26 bitri ( ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 ) ↔ ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐵 = 𝐵 ) )
28 5 27 mpbi ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐵 = 𝐵 )
29 28 oveq1d ( 𝑗 = 𝑘 → ( 𝑗 / 𝑘 𝐵 · 𝐶 ) = ( 𝐵 · 𝐶 ) )
30 nfcv 𝑘 ·
31 nfcv 𝑘 𝐶
32 9 30 31 nfov 𝑘 ( 𝑗 / 𝑘 𝐵 · 𝐶 )
33 nfcv 𝑗 ( 𝐵 · 𝐶 )
34 29 7 6 32 33 cbvsum Σ 𝑗𝐴 ( 𝑗 / 𝑘 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐵 · 𝐶 )
35 34 a1i ( 𝜑 → Σ 𝑗𝐴 ( 𝑗 / 𝑘 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐵 · 𝐶 ) )
36 12 22 35 3eqtrd ( 𝜑 → ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐵 · 𝐶 ) )