| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsummulc1f.ph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fsummulclf.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | fsummulclf.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | fsummulclf.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑗 𝐵 | 
						
							| 7 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 8 | 5 6 7 | cbvsum | ⊢ Σ 𝑘  ∈  𝐴 𝐵  =  Σ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 9 | 8 | oveq1i | ⊢ ( Σ 𝑘  ∈  𝐴 𝐵  ·  𝐶 )  =  ( Σ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ·  𝐶 ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  𝐴 𝐵  ·  𝐶 )  =  ( Σ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ·  𝐶 ) ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝐴 | 
						
							| 12 | 1 11 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝐴 ) | 
						
							| 13 | 7 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℂ | 
						
							| 14 | 12 13 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 15 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝐴  ↔  𝑗  ∈  𝐴 ) ) | 
						
							| 16 | 15 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝐴 ) ) ) | 
						
							| 17 | 5 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵  ∈  ℂ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 18 | 16 17 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) ) | 
						
							| 19 | 14 18 4 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 20 | 2 3 19 | fsummulc1 | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ·  𝐶 )  =  Σ 𝑗  ∈  𝐴 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ·  𝐶 ) ) | 
						
							| 21 |  | eqcom | ⊢ ( 𝑘  =  𝑗  ↔  𝑗  =  𝑘 ) | 
						
							| 22 | 21 | imbi1i | ⊢ ( ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  ↔  ( 𝑗  =  𝑘  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 23 |  | eqcom | ⊢ ( 𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  𝐵 ) | 
						
							| 24 | 23 | imbi2i | ⊢ ( ( 𝑗  =  𝑘  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  ↔  ( 𝑗  =  𝑘  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  𝐵 ) ) | 
						
							| 25 | 22 24 | bitri | ⊢ ( ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  ↔  ( 𝑗  =  𝑘  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  𝐵 ) ) | 
						
							| 26 | 5 25 | mpbi | ⊢ ( 𝑗  =  𝑘  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  𝐵 ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( 𝑗  =  𝑘  →  ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ·  𝐶 )  =  ( 𝐵  ·  𝐶 ) ) | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑘  · | 
						
							| 29 |  | nfcv | ⊢ Ⅎ 𝑘 𝐶 | 
						
							| 30 | 7 28 29 | nfov | ⊢ Ⅎ 𝑘 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ·  𝐶 ) | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑗 ( 𝐵  ·  𝐶 ) | 
						
							| 32 | 27 30 31 | cbvsum | ⊢ Σ 𝑗  ∈  𝐴 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ·  𝐶 )  =  Σ 𝑘  ∈  𝐴 ( 𝐵  ·  𝐶 ) | 
						
							| 33 | 32 | a1i | ⊢ ( 𝜑  →  Σ 𝑗  ∈  𝐴 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ·  𝐶 )  =  Σ 𝑘  ∈  𝐴 ( 𝐵  ·  𝐶 ) ) | 
						
							| 34 | 10 20 33 | 3eqtrd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  𝐴 𝐵  ·  𝐶 )  =  Σ 𝑘  ∈  𝐴 ( 𝐵  ·  𝐶 ) ) |