Metamath Proof Explorer


Theorem fsummulc1f

Description: Closure of a finite sum of complex numbers A ( k ) . A version of fsummulc1 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsummulc1f.ph 𝑘 𝜑
fsummulclf.a ( 𝜑𝐴 ∈ Fin )
fsummulclf.c ( 𝜑𝐶 ∈ ℂ )
fsummulclf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsummulc1f ( 𝜑 → ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐵 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 fsummulc1f.ph 𝑘 𝜑
2 fsummulclf.a ( 𝜑𝐴 ∈ Fin )
3 fsummulclf.c ( 𝜑𝐶 ∈ ℂ )
4 fsummulclf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
5 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
6 nfcv 𝑗 𝐵
7 nfcsb1v 𝑘 𝑗 / 𝑘 𝐵
8 5 6 7 cbvsum Σ 𝑘𝐴 𝐵 = Σ 𝑗𝐴 𝑗 / 𝑘 𝐵
9 8 oveq1i ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = ( Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 · 𝐶 )
10 9 a1i ( 𝜑 → ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = ( Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 · 𝐶 ) )
11 nfv 𝑘 𝑗𝐴
12 1 11 nfan 𝑘 ( 𝜑𝑗𝐴 )
13 7 nfel1 𝑘 𝑗 / 𝑘 𝐵 ∈ ℂ
14 12 13 nfim 𝑘 ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ )
15 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝐴𝑗𝐴 ) )
16 15 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑗𝐴 ) ) )
17 5 eleq1d ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ 𝑗 / 𝑘 𝐵 ∈ ℂ ) )
18 16 17 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ ) ) )
19 14 18 4 chvarfv ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ )
20 2 3 19 fsummulc1 ( 𝜑 → ( Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 · 𝐶 ) = Σ 𝑗𝐴 ( 𝑗 / 𝑘 𝐵 · 𝐶 ) )
21 eqcom ( 𝑘 = 𝑗𝑗 = 𝑘 )
22 21 imbi1i ( ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 ) ↔ ( 𝑗 = 𝑘𝐵 = 𝑗 / 𝑘 𝐵 ) )
23 eqcom ( 𝐵 = 𝑗 / 𝑘 𝐵 𝑗 / 𝑘 𝐵 = 𝐵 )
24 23 imbi2i ( ( 𝑗 = 𝑘𝐵 = 𝑗 / 𝑘 𝐵 ) ↔ ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐵 = 𝐵 ) )
25 22 24 bitri ( ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 ) ↔ ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐵 = 𝐵 ) )
26 5 25 mpbi ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐵 = 𝐵 )
27 26 oveq1d ( 𝑗 = 𝑘 → ( 𝑗 / 𝑘 𝐵 · 𝐶 ) = ( 𝐵 · 𝐶 ) )
28 nfcv 𝑘 ·
29 nfcv 𝑘 𝐶
30 7 28 29 nfov 𝑘 ( 𝑗 / 𝑘 𝐵 · 𝐶 )
31 nfcv 𝑗 ( 𝐵 · 𝐶 )
32 27 30 31 cbvsum Σ 𝑗𝐴 ( 𝑗 / 𝑘 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐵 · 𝐶 )
33 32 a1i ( 𝜑 → Σ 𝑗𝐴 ( 𝑗 / 𝑘 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐵 · 𝐶 ) )
34 10 20 33 3eqtrd ( 𝜑 → ( Σ 𝑘𝐴 𝐵 · 𝐶 ) = Σ 𝑘𝐴 ( 𝐵 · 𝐶 ) )