| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsummulc2.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
fsummulc2.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 3 |
|
fsummulc2.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 4 |
2
|
mul01d |
⊢ ( 𝜑 → ( 𝐶 · 0 ) = 0 ) |
| 5 |
|
sumeq1 |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
| 6 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
| 7 |
5 6
|
eqtrdi |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝐴 = ∅ → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝐶 · 0 ) ) |
| 9 |
|
sumeq1 |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) = Σ 𝑘 ∈ ∅ ( 𝐶 · 𝐵 ) ) |
| 10 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ ( 𝐶 · 𝐵 ) = 0 |
| 11 |
9 10
|
eqtrdi |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) = 0 ) |
| 12 |
8 11
|
eqeq12d |
⊢ ( 𝐴 = ∅ → ( ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ↔ ( 𝐶 · 0 ) = 0 ) ) |
| 13 |
4 12
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐴 = ∅ → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) ) |
| 14 |
|
addcl |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑛 + 𝑚 ) ∈ ℂ ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( 𝑛 + 𝑚 ) ∈ ℂ ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 17 |
|
adddi |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝐶 · ( 𝑛 + 𝑚 ) ) = ( ( 𝐶 · 𝑛 ) + ( 𝐶 · 𝑚 ) ) ) |
| 18 |
17
|
3expb |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( 𝐶 · ( 𝑛 + 𝑚 ) ) = ( ( 𝐶 · 𝑛 ) + ( 𝐶 · 𝑚 ) ) ) |
| 19 |
16 18
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( 𝐶 · ( 𝑛 + 𝑚 ) ) = ( ( 𝐶 · 𝑛 ) + ( 𝐶 · 𝑚 ) ) ) |
| 20 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 21 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 22 |
20 21
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 23 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 25 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
| 27 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 29 |
|
fco |
⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
| 30 |
24 28 29
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 32 |
30 31
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) ∈ ℂ ) |
| 33 |
28 31
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
| 35 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 36 |
35 3
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 37 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) |
| 38 |
37
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ ( 𝐶 · 𝐵 ) ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · 𝐵 ) ) |
| 39 |
34 36 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · 𝐵 ) ) |
| 40 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
| 41 |
40
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
| 42 |
34 3 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
| 43 |
42
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( 𝐶 · 𝐵 ) ) |
| 44 |
39 43
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 45 |
44
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 47 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) |
| 48 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐶 |
| 49 |
|
nfcv |
⊢ Ⅎ 𝑘 · |
| 50 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) |
| 51 |
48 49 50
|
nfov |
⊢ Ⅎ 𝑘 ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 52 |
47 51
|
nfeq |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 54 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 55 |
54
|
oveq2d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 56 |
53 55
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) ↔ ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
| 57 |
52 56
|
rspc |
⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
| 58 |
33 46 57
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 59 |
27
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 60 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 61 |
59 60
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 62 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 63 |
59 62
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 64 |
63
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐶 · ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 65 |
58 61 64
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( 𝐶 · ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) ) ) |
| 66 |
15 19 22 32 65
|
seqdistr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐶 · ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 67 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 68 |
36
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 70 |
69
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 71 |
67 20 25 70 61
|
fsum |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑚 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 72 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 73 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 74 |
73
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ∈ ℂ ) |
| 75 |
72 20 25 74 63
|
fsum |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 76 |
75
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐶 · Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ) = ( 𝐶 · ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 77 |
66 71 76
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐶 · Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ) = Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑚 ) ) |
| 78 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 𝐵 |
| 79 |
78
|
oveq2i |
⊢ ( 𝐶 · Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ) = ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 80 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) |
| 81 |
77 79 80
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) |
| 82 |
81
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) ) |
| 83 |
82
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) ) |
| 84 |
83
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) ) |
| 85 |
|
fz1f1o |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 86 |
1 85
|
syl |
⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 87 |
13 84 86
|
mpjaod |
⊢ ( 𝜑 → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) |