Step |
Hyp |
Ref |
Expression |
1 |
|
fsummulc2.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsummulc2.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
3 |
|
fsummulc2.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
4 |
2
|
mul01d |
⊢ ( 𝜑 → ( 𝐶 · 0 ) = 0 ) |
5 |
|
sumeq1 |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
6 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
7 |
5 6
|
eqtrdi |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
8 |
7
|
oveq2d |
⊢ ( 𝐴 = ∅ → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝐶 · 0 ) ) |
9 |
|
sumeq1 |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) = Σ 𝑘 ∈ ∅ ( 𝐶 · 𝐵 ) ) |
10 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ ( 𝐶 · 𝐵 ) = 0 |
11 |
9 10
|
eqtrdi |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) = 0 ) |
12 |
8 11
|
eqeq12d |
⊢ ( 𝐴 = ∅ → ( ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ↔ ( 𝐶 · 0 ) = 0 ) ) |
13 |
4 12
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐴 = ∅ → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) ) |
14 |
|
addcl |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑛 + 𝑚 ) ∈ ℂ ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( 𝑛 + 𝑚 ) ∈ ℂ ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
17 |
|
adddi |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝐶 · ( 𝑛 + 𝑚 ) ) = ( ( 𝐶 · 𝑛 ) + ( 𝐶 · 𝑚 ) ) ) |
18 |
17
|
3expb |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( 𝐶 · ( 𝑛 + 𝑚 ) ) = ( ( 𝐶 · 𝑛 ) + ( 𝐶 · 𝑚 ) ) ) |
19 |
16 18
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( 𝐶 · ( 𝑛 + 𝑚 ) ) = ( ( 𝐶 · 𝑛 ) + ( 𝐶 · 𝑚 ) ) ) |
20 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
21 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
22 |
20 21
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
23 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
25 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
27 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
28 |
26 27
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
29 |
|
fco |
⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
30 |
24 28 29
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
32 |
30 31
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) ∈ ℂ ) |
33 |
28 31
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
35 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
36 |
35 3
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
37 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) |
38 |
37
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ ( 𝐶 · 𝐵 ) ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · 𝐵 ) ) |
39 |
34 36 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · 𝐵 ) ) |
40 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
41 |
40
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
42 |
34 3 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
43 |
42
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( 𝐶 · 𝐵 ) ) |
44 |
39 43
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
45 |
44
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
47 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) |
48 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐶 |
49 |
|
nfcv |
⊢ Ⅎ 𝑘 · |
50 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) |
51 |
48 49 50
|
nfov |
⊢ Ⅎ 𝑘 ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
52 |
47 51
|
nfeq |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
53 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
54 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
56 |
53 55
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) ↔ ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
57 |
52 56
|
rspc |
⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑘 ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
58 |
33 46 57
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
59 |
27
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
60 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
61 |
59 60
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
62 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
63 |
59 62
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
64 |
63
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐶 · ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) ) = ( 𝐶 · ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
65 |
58 61 64
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( 𝐶 · ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) ) ) |
66 |
15 19 22 32 65
|
seqdistr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐶 · ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
67 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
68 |
36
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
70 |
69
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑚 ) ∈ ℂ ) |
71 |
67 20 25 70 61
|
fsum |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑚 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
72 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
73 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
74 |
73
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ∈ ℂ ) |
75 |
72 20 25 74 63
|
fsum |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
76 |
75
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐶 · Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ) = ( 𝐶 · ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
77 |
66 71 76
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐶 · Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ) = Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑚 ) ) |
78 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 𝐵 |
79 |
78
|
oveq2i |
⊢ ( 𝐶 · Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ) = ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) |
80 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) |
81 |
77 79 80
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) |
82 |
81
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) ) |
83 |
82
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) ) |
84 |
83
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) ) |
85 |
|
fz1f1o |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
86 |
1 85
|
syl |
⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
87 |
13 84 86
|
mpjaod |
⊢ ( 𝜑 → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) |