Metamath Proof Explorer


Theorem fsumneg

Description: Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumneg.1 ( 𝜑𝐴 ∈ Fin )
fsumneg.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsumneg ( 𝜑 → Σ 𝑘𝐴 - 𝐵 = - Σ 𝑘𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 fsumneg.1 ( 𝜑𝐴 ∈ Fin )
2 fsumneg.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
3 neg1cn - 1 ∈ ℂ
4 3 a1i ( 𝜑 → - 1 ∈ ℂ )
5 1 4 2 fsummulc2 ( 𝜑 → ( - 1 · Σ 𝑘𝐴 𝐵 ) = Σ 𝑘𝐴 ( - 1 · 𝐵 ) )
6 1 2 fsumcl ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℂ )
7 6 mulm1d ( 𝜑 → ( - 1 · Σ 𝑘𝐴 𝐵 ) = - Σ 𝑘𝐴 𝐵 )
8 2 mulm1d ( ( 𝜑𝑘𝐴 ) → ( - 1 · 𝐵 ) = - 𝐵 )
9 8 sumeq2dv ( 𝜑 → Σ 𝑘𝐴 ( - 1 · 𝐵 ) = Σ 𝑘𝐴 - 𝐵 )
10 5 7 9 3eqtr3rd ( 𝜑 → Σ 𝑘𝐴 - 𝐵 = - Σ 𝑘𝐴 𝐵 )