Metamath Proof Explorer


Theorem fsumnn0cl

Description: Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses fsumcl.1 ( 𝜑𝐴 ∈ Fin )
fsumnn0cl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℕ0 )
Assertion fsumnn0cl ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 fsumcl.1 ( 𝜑𝐴 ∈ Fin )
2 fsumnn0cl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℕ0 )
3 nn0sscn 0 ⊆ ℂ
4 3 a1i ( 𝜑 → ℕ0 ⊆ ℂ )
5 nn0addcl ( ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 )
6 5 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 )
7 0nn0 0 ∈ ℕ0
8 7 a1i ( 𝜑 → 0 ∈ ℕ0 )
9 4 6 1 2 8 fsumcllem ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℕ0 )