Step |
Hyp |
Ref |
Expression |
1 |
|
fsumnncl.an0 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
2 |
|
fsumnncl.afi |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fsumnncl.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℕ ) |
4 |
3
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℕ0 ) |
5 |
2 4
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℕ0 ) |
6 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑗 𝑗 ∈ 𝐴 ) |
7 |
1 6
|
sylib |
⊢ ( 𝜑 → ∃ 𝑗 𝑗 ∈ 𝐴 ) |
8 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 ∈ ℝ ) |
9 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) |
10 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
11 |
10
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℕ |
12 |
9 11
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℕ ) |
13 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ) ) |
15 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
16 |
15
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℕ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℕ ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℕ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℕ ) ) ) |
18 |
12 17 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℕ ) |
19 |
18
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
20 |
8 19
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 0 + ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
21 |
|
diffi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝑗 } ) ∈ Fin ) |
22 |
2 21
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝑗 } ) ∈ Fin ) |
23 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) → 𝑘 ∈ 𝐴 ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) ) → 𝑘 ∈ 𝐴 ) |
25 |
24 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) ) → 𝐵 ∈ ℕ0 ) |
26 |
22 25
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) 𝐵 ∈ ℕ0 ) |
27 |
26
|
nn0red |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) 𝐵 ∈ ℝ ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) 𝐵 ∈ ℝ ) |
29 |
28 19
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
30 |
18
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ+ ) |
31 |
8 30
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 < ( 0 + ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
32 |
26
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) 𝐵 ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 ≤ Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) 𝐵 ) |
34 |
8 28 19 33
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 0 + ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ≤ ( Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
35 |
8 20 29 31 34
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 < ( Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
36 |
|
difsnid |
⊢ ( 𝑗 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑗 } ) ∪ { 𝑗 } ) = 𝐴 ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑗 } ) ∪ { 𝑗 } ) = 𝐴 ) |
38 |
37
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐴 = ( ( 𝐴 ∖ { 𝑗 } ) ∪ { 𝑗 } ) ) |
39 |
38
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ( ( 𝐴 ∖ { 𝑗 } ) ∪ { 𝑗 } ) 𝐵 ) |
40 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑗 } ) ∈ Fin ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ 𝐴 ) |
42 |
|
neldifsnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ¬ 𝑗 ∈ ( 𝐴 ∖ { 𝑗 } ) ) |
43 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) ) → 𝜑 ) |
44 |
43 24 3
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) ) → 𝐵 ∈ ℕ ) |
45 |
44
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) ) → 𝐵 ∈ ℂ ) |
46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) ) → 𝐵 ∈ ℂ ) |
47 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ℕ ⊆ ℂ ) |
49 |
48 18
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
50 |
9 10 40 41 42 46 15 49
|
fsumsplitsn |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → Σ 𝑘 ∈ ( ( 𝐴 ∖ { 𝑗 } ) ∪ { 𝑗 } ) 𝐵 = ( Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
51 |
39 50
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑗 } ) 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
52 |
35 51
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 < Σ 𝑘 ∈ 𝐴 𝐵 ) |
53 |
52
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 → 0 < Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
54 |
53
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑗 𝑗 ∈ 𝐴 → 0 < Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
55 |
7 54
|
mpd |
⊢ ( 𝜑 → 0 < Σ 𝑘 ∈ 𝐴 𝐵 ) |
56 |
5 55
|
jca |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
57 |
|
elnnnn0b |
⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℕ ↔ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
58 |
56 57
|
sylibr |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℕ ) |