Metamath Proof Explorer


Theorem fsump1

Description: The addition of the next term in a finite sum of A ( k ) is the current term plus B i.e. A ( N + 1 ) . (Contributed by NM, 4-Nov-2005) (Revised by Mario Carneiro, 21-Apr-2014)

Ref Expression
Hypotheses fsump1.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
fsump1.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ )
fsump1.3 ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐵 )
Assertion fsump1 ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fsump1.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
2 fsump1.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ )
3 fsump1.3 ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐵 )
4 peano2uz ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ𝑀 ) )
5 1 4 syl ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ𝑀 ) )
6 5 2 3 fsumm1 ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 + 𝐵 ) )
7 eluzelz ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℤ )
8 1 7 syl ( 𝜑𝑁 ∈ ℤ )
9 8 zcnd ( 𝜑𝑁 ∈ ℂ )
10 ax-1cn 1 ∈ ℂ
11 pncan ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
12 9 10 11 sylancl ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
13 12 oveq2d ( 𝜑 → ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑁 ) )
14 13 sumeq1d ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 )
15 14 oveq1d ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 + 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 + 𝐵 ) )
16 6 15 eqtrd ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 + 𝐵 ) )