Step |
Hyp |
Ref |
Expression |
1 |
|
fsump1i.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
fsump1i.2 |
⊢ 𝑁 = ( 𝐾 + 1 ) |
3 |
|
fsump1i.3 |
⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐵 ) |
4 |
|
fsump1i.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
5 |
|
fsump1i.5 |
⊢ ( 𝜑 → ( 𝐾 ∈ 𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 = 𝑆 ) ) |
6 |
|
fsump1i.6 |
⊢ ( 𝜑 → ( 𝑆 + 𝐵 ) = 𝑇 ) |
7 |
5
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ 𝑍 ) |
8 |
7 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
|
peano2uz |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
9 1
|
eleqtrrdi |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 + 1 ) ∈ 𝑍 ) |
11 |
8 10
|
syl |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ 𝑍 ) |
12 |
2 11
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
13 |
2
|
oveq2i |
⊢ ( 𝑀 ... 𝑁 ) = ( 𝑀 ... ( 𝐾 + 1 ) ) |
14 |
13
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... ( 𝐾 + 1 ) ) 𝐴 |
15 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
16 |
15 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ 𝑍 ) |
17 |
16 4
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐾 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
18 |
2
|
eqeq2i |
⊢ ( 𝑘 = 𝑁 ↔ 𝑘 = ( 𝐾 + 1 ) ) |
19 |
18 3
|
sylbir |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → 𝐴 = 𝐵 ) |
20 |
8 17 19
|
fsump1 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝐾 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 + 𝐵 ) ) |
21 |
14 20
|
eqtrid |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 + 𝐵 ) ) |
22 |
5
|
simprd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 = 𝑆 ) |
23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 + 𝐵 ) = ( 𝑆 + 𝐵 ) ) |
24 |
21 23 6
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = 𝑇 ) |
25 |
12 24
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = 𝑇 ) ) |