| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumparts.b | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴  =  𝐵  ∧  𝑉  =  𝑊 ) ) | 
						
							| 2 |  | fsumparts.c | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 𝐴  =  𝐶  ∧  𝑉  =  𝑋 ) ) | 
						
							| 3 |  | fsumparts.d | ⊢ ( 𝑘  =  𝑀  →  ( 𝐴  =  𝐷  ∧  𝑉  =  𝑌 ) ) | 
						
							| 4 |  | fsumparts.e | ⊢ ( 𝑘  =  𝑁  →  ( 𝐴  =  𝐸  ∧  𝑉  =  𝑍 ) ) | 
						
							| 5 |  | fsumparts.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 |  | fsumparts.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | fsumparts.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑉  ∈  ℂ ) | 
						
							| 8 |  | sum0 | ⊢ Σ 𝑗  ∈  ∅ ( 𝐵  ·  ( 𝑋  −  𝑊 ) )  =  0 | 
						
							| 9 |  | 0m0e0 | ⊢ ( 0  −  0 )  =  0 | 
						
							| 10 | 8 9 | eqtr4i | ⊢ Σ 𝑗  ∈  ∅ ( 𝐵  ·  ( 𝑋  −  𝑊 ) )  =  ( 0  −  0 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  𝑁  =  𝑀 ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  ( 𝑀 ..^ 𝑁 )  =  ( 𝑀 ..^ 𝑀 ) ) | 
						
							| 13 |  | fzo0 | ⊢ ( 𝑀 ..^ 𝑀 )  =  ∅ | 
						
							| 14 | 12 13 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  ( 𝑀 ..^ 𝑁 )  =  ∅ ) | 
						
							| 15 | 14 | sumeq1d | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  ( 𝑋  −  𝑊 ) )  =  Σ 𝑗  ∈  ∅ ( 𝐵  ·  ( 𝑋  −  𝑊 ) ) ) | 
						
							| 16 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 17 | 5 16 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 18 |  | eqtr3 | ⊢ ( ( 𝑘  =  𝑀  ∧  𝑁  =  𝑀 )  →  𝑘  =  𝑁 ) | 
						
							| 19 |  | oveq12 | ⊢ ( ( 𝐴  =  𝐸  ∧  𝑉  =  𝑍 )  →  ( 𝐴  ·  𝑉 )  =  ( 𝐸  ·  𝑍 ) ) | 
						
							| 20 | 18 4 19 | 3syl | ⊢ ( ( 𝑘  =  𝑀  ∧  𝑁  =  𝑀 )  →  ( 𝐴  ·  𝑉 )  =  ( 𝐸  ·  𝑍 ) ) | 
						
							| 21 |  | oveq12 | ⊢ ( ( 𝐴  =  𝐷  ∧  𝑉  =  𝑌 )  →  ( 𝐴  ·  𝑉 )  =  ( 𝐷  ·  𝑌 ) ) | 
						
							| 22 | 3 21 | syl | ⊢ ( 𝑘  =  𝑀  →  ( 𝐴  ·  𝑉 )  =  ( 𝐷  ·  𝑌 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑘  =  𝑀  ∧  𝑁  =  𝑀 )  →  ( 𝐴  ·  𝑉 )  =  ( 𝐷  ·  𝑌 ) ) | 
						
							| 24 | 20 23 | eqeq12d | ⊢ ( ( 𝑘  =  𝑀  ∧  𝑁  =  𝑀 )  →  ( ( 𝐴  ·  𝑉 )  =  ( 𝐴  ·  𝑉 )  ↔  ( 𝐸  ·  𝑍 )  =  ( 𝐷  ·  𝑌 ) ) ) | 
						
							| 25 | 24 | pm5.74da | ⊢ ( 𝑘  =  𝑀  →  ( ( 𝑁  =  𝑀  →  ( 𝐴  ·  𝑉 )  =  ( 𝐴  ·  𝑉 ) )  ↔  ( 𝑁  =  𝑀  →  ( 𝐸  ·  𝑍 )  =  ( 𝐷  ·  𝑌 ) ) ) ) | 
						
							| 26 |  | eqidd | ⊢ ( 𝑁  =  𝑀  →  ( 𝐴  ·  𝑉 )  =  ( 𝐴  ·  𝑉 ) ) | 
						
							| 27 | 25 26 | vtoclg | ⊢ ( 𝑀  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝑁  =  𝑀  →  ( 𝐸  ·  𝑍 )  =  ( 𝐷  ·  𝑌 ) ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( 𝑀  ∈  ( 𝑀 ... 𝑁 )  ∧  𝑁  =  𝑀 )  →  ( 𝐸  ·  𝑍 )  =  ( 𝐷  ·  𝑌 ) ) | 
						
							| 29 | 17 28 | sylan | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  ( 𝐸  ·  𝑍 )  =  ( 𝐷  ·  𝑌 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  ( ( 𝐸  ·  𝑍 )  −  ( 𝐷  ·  𝑌 ) )  =  ( ( 𝐷  ·  𝑌 )  −  ( 𝐷  ·  𝑌 ) ) ) | 
						
							| 31 | 3 | simpld | ⊢ ( 𝑘  =  𝑀  →  𝐴  =  𝐷 ) | 
						
							| 32 | 31 | eleq1d | ⊢ ( 𝑘  =  𝑀  →  ( 𝐴  ∈  ℂ  ↔  𝐷  ∈  ℂ ) ) | 
						
							| 33 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ∈  ℂ ) | 
						
							| 34 | 32 33 17 | rspcdva | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 35 | 3 | simprd | ⊢ ( 𝑘  =  𝑀  →  𝑉  =  𝑌 ) | 
						
							| 36 | 35 | eleq1d | ⊢ ( 𝑘  =  𝑀  →  ( 𝑉  ∈  ℂ  ↔  𝑌  ∈  ℂ ) ) | 
						
							| 37 | 7 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝑉  ∈  ℂ ) | 
						
							| 38 | 36 37 17 | rspcdva | ⊢ ( 𝜑  →  𝑌  ∈  ℂ ) | 
						
							| 39 | 34 38 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  𝑌 )  ∈  ℂ ) | 
						
							| 40 | 39 | subidd | ⊢ ( 𝜑  →  ( ( 𝐷  ·  𝑌 )  −  ( 𝐷  ·  𝑌 ) )  =  0 ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  ( ( 𝐷  ·  𝑌 )  −  ( 𝐷  ·  𝑌 ) )  =  0 ) | 
						
							| 42 | 30 41 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  ( ( 𝐸  ·  𝑍 )  −  ( 𝐷  ·  𝑌 ) )  =  0 ) | 
						
							| 43 | 14 | sumeq1d | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 )  =  Σ 𝑗  ∈  ∅ ( ( 𝐶  −  𝐵 )  ·  𝑋 ) ) | 
						
							| 44 |  | sum0 | ⊢ Σ 𝑗  ∈  ∅ ( ( 𝐶  −  𝐵 )  ·  𝑋 )  =  0 | 
						
							| 45 | 43 44 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 )  =  0 ) | 
						
							| 46 | 42 45 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  ( ( ( 𝐸  ·  𝑍 )  −  ( 𝐷  ·  𝑌 ) )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 ) )  =  ( 0  −  0 ) ) | 
						
							| 47 | 10 15 46 | 3eqtr4a | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑀 )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  ( 𝑋  −  𝑊 ) )  =  ( ( ( 𝐸  ·  𝑍 )  −  ( 𝐷  ·  𝑌 ) )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 ) ) ) | 
						
							| 48 |  | fzofi | ⊢ ( ( 𝑀  +  1 ) ..^ 𝑁 )  ∈  Fin | 
						
							| 49 | 48 | a1i | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝑀  +  1 ) ..^ 𝑁 )  ∈  Fin ) | 
						
							| 50 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 51 | 5 50 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 53 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 54 |  | peano2uz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 55 |  | fzoss1 | ⊢ ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀  +  1 ) ..^ 𝑁 )  ⊆  ( 𝑀 ..^ 𝑁 ) ) | 
						
							| 56 | 52 53 54 55 | 4syl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝑀  +  1 ) ..^ 𝑁 )  ⊆  ( 𝑀 ..^ 𝑁 ) ) | 
						
							| 57 | 56 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  →  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ) | 
						
							| 58 |  | elfzofz | ⊢ ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑘  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 59 | 6 7 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐴  ·  𝑉 )  ∈  ℂ ) | 
						
							| 60 | 58 59 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐴  ·  𝑉 )  ∈  ℂ ) | 
						
							| 61 | 60 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐴  ·  𝑉 )  ∈  ℂ ) | 
						
							| 62 | 57 61 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  →  ( 𝐴  ·  𝑉 )  ∈  ℂ ) | 
						
							| 63 | 49 62 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  ∈  ℂ ) | 
						
							| 64 | 4 | simpld | ⊢ ( 𝑘  =  𝑁  →  𝐴  =  𝐸 ) | 
						
							| 65 | 64 | eleq1d | ⊢ ( 𝑘  =  𝑁  →  ( 𝐴  ∈  ℂ  ↔  𝐸  ∈  ℂ ) ) | 
						
							| 66 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 67 | 5 66 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 68 | 65 33 67 | rspcdva | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 69 | 4 | simprd | ⊢ ( 𝑘  =  𝑁  →  𝑉  =  𝑍 ) | 
						
							| 70 | 69 | eleq1d | ⊢ ( 𝑘  =  𝑁  →  ( 𝑉  ∈  ℂ  ↔  𝑍  ∈  ℂ ) ) | 
						
							| 71 | 70 37 67 | rspcdva | ⊢ ( 𝜑  →  𝑍  ∈  ℂ ) | 
						
							| 72 | 68 71 | mulcld | ⊢ ( 𝜑  →  ( 𝐸  ·  𝑍 )  ∈  ℂ ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝐸  ·  𝑍 )  ∈  ℂ ) | 
						
							| 74 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 75 |  | fzp1ss | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 76 | 52 75 | syl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 77 | 76 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑘  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 78 | 59 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐴  ·  𝑉 )  ∈  ℂ ) | 
						
							| 79 | 77 78 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( 𝐴  ·  𝑉 )  ∈  ℂ ) | 
						
							| 80 | 4 19 | syl | ⊢ ( 𝑘  =  𝑁  →  ( 𝐴  ·  𝑉 )  =  ( 𝐸  ·  𝑍 ) ) | 
						
							| 81 | 74 79 80 | fsumm1 | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ( 𝐴  ·  𝑉 )  =  ( Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ... ( 𝑁  −  1 ) ) ( 𝐴  ·  𝑉 )  +  ( 𝐸  ·  𝑍 ) ) ) | 
						
							| 82 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 83 | 5 82 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 85 |  | fzoval | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑀 ..^ 𝑁 )  =  ( 𝑀 ... ( 𝑁  −  1 ) ) ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝑀 ..^ 𝑁 )  =  ( 𝑀 ... ( 𝑁  −  1 ) ) ) | 
						
							| 87 | 52 | zcnd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑀  ∈  ℂ ) | 
						
							| 88 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 89 |  | pncan | ⊢ ( ( 𝑀  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑀  +  1 )  −  1 )  =  𝑀 ) | 
						
							| 90 | 87 88 89 | sylancl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝑀  +  1 )  −  1 )  =  𝑀 ) | 
						
							| 91 | 90 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( ( 𝑀  +  1 )  −  1 ) ... ( 𝑁  −  1 ) )  =  ( 𝑀 ... ( 𝑁  −  1 ) ) ) | 
						
							| 92 | 86 91 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝑀 ..^ 𝑁 )  =  ( ( ( 𝑀  +  1 )  −  1 ) ... ( 𝑁  −  1 ) ) ) | 
						
							| 93 | 92 | sumeq1d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐶  ·  𝑋 )  =  Σ 𝑗  ∈  ( ( ( 𝑀  +  1 )  −  1 ) ... ( 𝑁  −  1 ) ) ( 𝐶  ·  𝑋 ) ) | 
						
							| 94 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  1  ∈  ℤ ) | 
						
							| 95 | 52 | peano2zd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝑀  +  1 )  ∈  ℤ ) | 
						
							| 96 |  | oveq12 | ⊢ ( ( 𝐴  =  𝐶  ∧  𝑉  =  𝑋 )  →  ( 𝐴  ·  𝑉 )  =  ( 𝐶  ·  𝑋 ) ) | 
						
							| 97 | 2 96 | syl | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 𝐴  ·  𝑉 )  =  ( 𝐶  ·  𝑋 ) ) | 
						
							| 98 | 94 95 84 79 97 | fsumshftm | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ( 𝐴  ·  𝑉 )  =  Σ 𝑗  ∈  ( ( ( 𝑀  +  1 )  −  1 ) ... ( 𝑁  −  1 ) ) ( 𝐶  ·  𝑋 ) ) | 
						
							| 99 | 93 98 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐶  ·  𝑋 )  =  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ( 𝐴  ·  𝑉 ) ) | 
						
							| 100 |  | fzoval | ⊢ ( 𝑁  ∈  ℤ  →  ( ( 𝑀  +  1 ) ..^ 𝑁 )  =  ( ( 𝑀  +  1 ) ... ( 𝑁  −  1 ) ) ) | 
						
							| 101 | 84 100 | syl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝑀  +  1 ) ..^ 𝑁 )  =  ( ( 𝑀  +  1 ) ... ( 𝑁  −  1 ) ) ) | 
						
							| 102 | 101 | sumeq1d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  =  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ... ( 𝑁  −  1 ) ) ( 𝐴  ·  𝑉 ) ) | 
						
							| 103 | 102 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  +  ( 𝐸  ·  𝑍 ) )  =  ( Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ... ( 𝑁  −  1 ) ) ( 𝐴  ·  𝑉 )  +  ( 𝐸  ·  𝑍 ) ) ) | 
						
							| 104 | 81 99 103 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐶  ·  𝑋 )  =  ( Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  +  ( 𝐸  ·  𝑍 ) ) ) | 
						
							| 105 | 63 73 104 | comraddd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐶  ·  𝑋 )  =  ( ( 𝐸  ·  𝑍 )  +  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) ) ) | 
						
							| 106 | 105 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐶  ·  𝑋 )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 ) )  =  ( ( ( 𝐸  ·  𝑍 )  +  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 107 |  | fzofzp1 | ⊢ ( 𝑗  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑗  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 108 | 2 | simpld | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  𝐴  =  𝐶 ) | 
						
							| 109 | 108 | eleq1d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 𝐴  ∈  ℂ  ↔  𝐶  ∈  ℂ ) ) | 
						
							| 110 | 109 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ∈  ℂ  ∧  ( 𝑗  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 111 | 33 107 110 | syl2an | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 112 |  | elfzofz | ⊢ ( 𝑗  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑗  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 113 | 1 | simpld | ⊢ ( 𝑘  =  𝑗  →  𝐴  =  𝐵 ) | 
						
							| 114 | 113 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴  ∈  ℂ  ↔  𝐵  ∈  ℂ ) ) | 
						
							| 115 | 114 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ∈  ℂ  ∧  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 116 | 33 112 115 | syl2an | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 117 | 2 | simprd | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  𝑉  =  𝑋 ) | 
						
							| 118 | 117 | eleq1d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 𝑉  ∈  ℂ  ↔  𝑋  ∈  ℂ ) ) | 
						
							| 119 | 118 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝑉  ∈  ℂ  ∧  ( 𝑗  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑋  ∈  ℂ ) | 
						
							| 120 | 37 107 119 | syl2an | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑋  ∈  ℂ ) | 
						
							| 121 | 111 116 120 | subdird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐶  −  𝐵 )  ·  𝑋 )  =  ( ( 𝐶  ·  𝑋 )  −  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 122 | 121 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 )  =  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  ·  𝑋 )  −  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 123 |  | fzofi | ⊢ ( 𝑀 ..^ 𝑁 )  ∈  Fin | 
						
							| 124 | 123 | a1i | ⊢ ( 𝜑  →  ( 𝑀 ..^ 𝑁 )  ∈  Fin ) | 
						
							| 125 | 111 120 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐶  ·  𝑋 )  ∈  ℂ ) | 
						
							| 126 | 116 120 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐵  ·  𝑋 )  ∈  ℂ ) | 
						
							| 127 | 124 125 126 | fsumsub | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  ·  𝑋 )  −  ( 𝐵  ·  𝑋 ) )  =  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐶  ·  𝑋 )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 128 | 122 127 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 )  =  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐶  ·  𝑋 )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 )  =  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐶  ·  𝑋 )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 130 | 124 126 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  ∈  ℂ ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  ∈  ℂ ) | 
						
							| 132 | 73 131 63 | subsub3d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐸  ·  𝑍 )  −  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) ) )  =  ( ( ( 𝐸  ·  𝑍 )  +  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 133 | 106 129 132 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 )  =  ( ( 𝐸  ·  𝑍 )  −  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) ) ) ) | 
						
							| 134 | 133 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( ( 𝐸  ·  𝑍 )  −  ( 𝐷  ·  𝑌 ) )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 ) )  =  ( ( ( 𝐸  ·  𝑍 )  −  ( 𝐷  ·  𝑌 ) )  −  ( ( 𝐸  ·  𝑍 )  −  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) ) ) ) ) | 
						
							| 135 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝐷  ·  𝑌 )  ∈  ℂ ) | 
						
							| 136 | 131 63 | subcld | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) )  ∈  ℂ ) | 
						
							| 137 | 73 135 136 | nnncan1d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( ( 𝐸  ·  𝑍 )  −  ( 𝐷  ·  𝑌 ) )  −  ( ( 𝐸  ·  𝑍 )  −  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) ) ) )  =  ( ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) )  −  ( 𝐷  ·  𝑌 ) ) ) | 
						
							| 138 | 63 135 | addcomd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  +  ( 𝐷  ·  𝑌 ) )  =  ( ( 𝐷  ·  𝑌 )  +  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) ) ) | 
						
							| 139 |  | eluzp1m1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 140 | 51 139 | sylan | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 141 | 86 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  ↔  𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 142 | 141 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ) | 
						
							| 143 | 142 61 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  ( 𝐴  ·  𝑉 )  ∈  ℂ ) | 
						
							| 144 | 140 143 22 | fsum1p | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) ( 𝐴  ·  𝑉 )  =  ( ( 𝐷  ·  𝑌 )  +  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ... ( 𝑁  −  1 ) ) ( 𝐴  ·  𝑉 ) ) ) | 
						
							| 145 | 86 | sumeq1d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  =  Σ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) ( 𝐴  ·  𝑉 ) ) | 
						
							| 146 | 102 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐷  ·  𝑌 )  +  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) )  =  ( ( 𝐷  ·  𝑌 )  +  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ... ( 𝑁  −  1 ) ) ( 𝐴  ·  𝑉 ) ) ) | 
						
							| 147 | 144 145 146 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  =  ( ( 𝐷  ·  𝑌 )  +  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) ) ) | 
						
							| 148 | 138 147 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  +  ( 𝐷  ·  𝑌 ) )  =  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) ) | 
						
							| 149 |  | oveq12 | ⊢ ( ( 𝐴  =  𝐵  ∧  𝑉  =  𝑊 )  →  ( 𝐴  ·  𝑉 )  =  ( 𝐵  ·  𝑊 ) ) | 
						
							| 150 | 1 149 | syl | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴  ·  𝑉 )  =  ( 𝐵  ·  𝑊 ) ) | 
						
							| 151 | 150 | cbvsumv | ⊢ Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  =  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑊 ) | 
						
							| 152 | 148 151 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  +  ( 𝐷  ·  𝑌 ) )  =  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑊 ) ) | 
						
							| 153 | 152 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  ( Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  +  ( 𝐷  ·  𝑌 ) ) )  =  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑊 ) ) ) | 
						
							| 154 | 131 63 135 | subsub4d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) )  −  ( 𝐷  ·  𝑌 ) )  =  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  ( Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 )  +  ( 𝐷  ·  𝑌 ) ) ) ) | 
						
							| 155 | 1 | simprd | ⊢ ( 𝑘  =  𝑗  →  𝑉  =  𝑊 ) | 
						
							| 156 | 155 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝑉  ∈  ℂ  ↔  𝑊  ∈  ℂ ) ) | 
						
							| 157 | 156 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝑉  ∈  ℂ  ∧  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑊  ∈  ℂ ) | 
						
							| 158 | 37 112 157 | syl2an | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑊  ∈  ℂ ) | 
						
							| 159 | 116 120 158 | subdid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐵  ·  ( 𝑋  −  𝑊 ) )  =  ( ( 𝐵  ·  𝑋 )  −  ( 𝐵  ·  𝑊 ) ) ) | 
						
							| 160 | 159 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  ( 𝑋  −  𝑊 ) )  =  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐵  ·  𝑋 )  −  ( 𝐵  ·  𝑊 ) ) ) | 
						
							| 161 | 116 158 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐵  ·  𝑊 )  ∈  ℂ ) | 
						
							| 162 | 124 126 161 | fsumsub | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐵  ·  𝑋 )  −  ( 𝐵  ·  𝑊 ) )  =  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑊 ) ) ) | 
						
							| 163 | 160 162 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  ( 𝑋  −  𝑊 ) )  =  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑊 ) ) ) | 
						
							| 164 | 163 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  ( 𝑋  −  𝑊 ) )  =  ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑊 ) ) ) | 
						
							| 165 | 153 154 164 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  𝑋 )  −  Σ 𝑘  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ( 𝐴  ·  𝑉 ) )  −  ( 𝐷  ·  𝑌 ) )  =  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  ( 𝑋  −  𝑊 ) ) ) | 
						
							| 166 | 134 137 165 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  ( 𝑋  −  𝑊 ) )  =  ( ( ( 𝐸  ·  𝑍 )  −  ( 𝐷  ·  𝑌 ) )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 ) ) ) | 
						
							| 167 |  | uzp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  =  𝑀  ∨  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 168 | 5 167 | syl | ⊢ ( 𝜑  →  ( 𝑁  =  𝑀  ∨  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 169 | 47 166 168 | mpjaodan | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐵  ·  ( 𝑋  −  𝑊 ) )  =  ( ( ( 𝐸  ·  𝑍 )  −  ( 𝐷  ·  𝑌 ) )  −  Σ 𝑗  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐶  −  𝐵 )  ·  𝑋 ) ) ) |