Metamath Proof Explorer


Theorem fsumre

Description: The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)

Ref Expression
Hypotheses fsumre.1 ( 𝜑𝐴 ∈ Fin )
fsumre.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fsumre ( 𝜑 → ( ℜ ‘ Σ 𝑘𝐴 𝐵 ) = Σ 𝑘𝐴 ( ℜ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fsumre.1 ( 𝜑𝐴 ∈ Fin )
2 fsumre.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
3 ref ℜ : ℂ ⟶ ℝ
4 ax-resscn ℝ ⊆ ℂ
5 fss ( ( ℜ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℜ : ℂ ⟶ ℂ )
6 3 4 5 mp2an ℜ : ℂ ⟶ ℂ
7 readd ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ℜ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ℜ ‘ 𝑥 ) + ( ℜ ‘ 𝑦 ) ) )
8 1 2 6 7 fsumrelem ( 𝜑 → ( ℜ ‘ Σ 𝑘𝐴 𝐵 ) = Σ 𝑘𝐴 ( ℜ ‘ 𝐵 ) )