Metamath Proof Explorer
Description: Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005)
(Revised by Mario Carneiro, 22-Apr-2014)
|
|
Ref |
Expression |
|
Hypotheses |
fsumcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
fsumrecl.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
|
Assertion |
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumrecl.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
4 |
3
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
5 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
7 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
8 |
4 6 1 2 7
|
fsumcllem |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |