Metamath Proof Explorer


Theorem fsumreclf

Description: Closure of a finite sum of reals. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses fsumreclf.k 𝑘 𝜑
fsumreclf.a ( 𝜑𝐴 ∈ Fin )
fsumreclf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
Assertion fsumreclf ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 fsumreclf.k 𝑘 𝜑
2 fsumreclf.a ( 𝜑𝐴 ∈ Fin )
3 fsumreclf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
4 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
5 nfcv 𝑗 𝐴
6 nfcv 𝑘 𝐴
7 nfcv 𝑗 𝐵
8 nfcsb1v 𝑘 𝑗 / 𝑘 𝐵
9 4 5 6 7 8 cbvsum Σ 𝑘𝐴 𝐵 = Σ 𝑗𝐴 𝑗 / 𝑘 𝐵
10 9 a1i ( 𝜑 → Σ 𝑘𝐴 𝐵 = Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 )
11 nfv 𝑘 𝑗𝐴
12 1 11 nfan 𝑘 ( 𝜑𝑗𝐴 )
13 8 nfel1 𝑘 𝑗 / 𝑘 𝐵 ∈ ℝ
14 12 13 nfim 𝑘 ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ )
15 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝐴𝑗𝐴 ) )
16 15 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑗𝐴 ) ) )
17 4 eleq1d ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℝ ↔ 𝑗 / 𝑘 𝐵 ∈ ℝ ) )
18 16 17 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ ) ) )
19 14 18 3 chvarfv ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ )
20 2 19 fsumrecl ( 𝜑 → Σ 𝑗𝐴 𝑗 / 𝑘 𝐵 ∈ ℝ )
21 10 20 eqeltrd ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℝ )