Step |
Hyp |
Ref |
Expression |
1 |
|
fsumreclf.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fsumreclf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fsumreclf.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐴 |
6 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
7 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐵 |
8 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
9 |
4 5 6 7 8
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
10 |
9
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝐴 |
12 |
1 11
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) |
13 |
8
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ |
14 |
12 13
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
15 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ) ) |
17 |
4
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) |
18 |
16 17
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) ) |
19 |
14 18 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
20 |
2 19
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
21 |
10 20
|
eqeltrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |